551 Publikationen
-
2025 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001606Feldhans, R., & Hammer, B., 2025. Towards Reliable Drift Detection and Explanation in Text Data. In Intelligent Data Engineering and Automated Learning – IDEAL 2024, PT I. Lecture Notes in Computer Science. no.15346 Cham: Springer , pp. 301-312.PUB | DOI | WoS
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2989164Velioglu, R., Chan, R.K.-W., & Hammer, B., 2024. FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation. In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN). New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS | arXiv
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001615Markmann, T., Straat, M., & Hammer, B., 2024. Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Benard Convection. In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN). New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001626Internò, C., et al., 2024. Federated Loss Exploration for Improved Convergence on Non-IID Data. In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN). New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS
-
-
-
2024 | Konferenzbeitrag | PUB-ID: 3000176Fumagalli, F., et al., 2024. KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions. In R. Salakhutdinov, et al., eds. Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research. no.235 PMLR, pp. 14308-14342.PUB
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993714Mazur, A., et al., 2024. Visualizing and Improving 3D Mesh Segmentation with DeepView. In ESANN 2024 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, pp. 649-654.PUB | PDF | DOI | Download (ext.)
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2993739Vaquet, V., et al., 2024. Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks. In M. Wand, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 155-170.PUB | DOI | WoS
-
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2994158Hammer, B., 2024. Explaining Neural Networks - Deep and Shallow. In T. Villmann, et al., eds. Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond (WSOM+ 2024) . Lecture Notes in Networks and Systems. no.1087 Cham: Springer , pp. 139-140.PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2991394Kolpaczki, P., et al., 2024. SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In S. Dasgupta, S. Mandt, & Y. Li, eds. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. no.238 San Diego: PMLR, pp. 3520-3528.PUB | WoS | arXiv
-
-
2024 | Konferenzbeitrag | PUB-ID: 2992095Störck, F., et al., 2024. FairGLVQ: Fairness in Partition-Based Classification. In T. Villmann, et al., eds. Proceedings of the 15th International Workshop on Self-Organizing Maps (WSOM 2024). Cham: Springer Nature Switzerland, pp. 141-151.PUB | DOI | Download (ext.) | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993721Peters, H., et al., 2024. Novel approach for data-driven modelling of multi-stage straightening and bending processes. In Material Forming: ESAFORM 2024. Materials Research Proceedings. no.41 Materials Research Forum LLC, pp. 2289-2298.PUB | DOI
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993652Shah, Z.H., et al., 2024. Image restoration in frequency space using complex-valued CNNs. Frontiers in Artificial Intelligence , 7: 1353873.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2991468Hinder, F., Vaquet, V., & Hammer, B., 2024. One or two things we know about concept drift—a survey on monitoring in evolving environments. Part B: locating and explaining concept drift. Frontiers in Artificial Intelligence, 7.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
-
-
-
2024 | Report | Veröffentlicht | PUB-ID: 2992602Hammer, B., et al., 2024. Sustainable Life-Cycle of Intelligent Socio-Technical Systems,PUB | Dateien verfügbar | DOI
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2988509Hinder, F., Vaquet, V., & Hammer, B., 2024. A Remark on Concept Drift for Dependent Data. In I. Miliou, N. Piatkowski, & P. Papapetrou, eds. Advances in Intelligent Data Analysis XXII. 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 77-89.PUB | DOI | WoS
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2992337Zanutto, D., et al., 2024. A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning. In The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024). Basel Switzerland: MDPI, pp. 60.PUB | PDF | DOI
-
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2991310Hinder, F., Vaquet, V., & Hammer, B., 2024. One or two things we know about concept drift-a survey on monitoring in evolving environments. Part A: detecting concept drift. Frontiers in Artificial Intelligence , 7: 1330257.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987572Schroeder, S., et al., 2024. Semantic Properties of Cosine Based Bias Scores for Word Embeddings. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods. Vol. 1. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 160-168.PUB | DOI
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987573Grimmelsmann, N., et al., 2024. Predicting the Level of Co-Activation of One Muscle Head from the Other Muscle Head of the Biceps Brachii Muscle by Linear Regression and Shallow Feedforward Neural Networks. In Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 611-621.PUB | DOI
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2988098Vaquet, V., Hinder, F., & Hammer, B., 2024. Investigating the Suitability of Concept Drift Detection for Detecting Leakages in Water Distribution Networks. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods ICPRAM. Volume 1. SCITEPRESS - Science and Technology Publications, pp. 296-303.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2984049Ashraf, M.I., et al., 2023. Spatial Graph Convolution Neural Networks for Water Distribution Systems. In B. Crémilleux, S. Hess, & S. Nijssen, eds. Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 29-41.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983942Muschalik, M., et al., 2023. iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios. In L. Longo, ed. Explainable Artificial Intelligence. First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part I. Communications in Computer and Information Science. Cham: Springer Nature Switzerland, pp. 177-194.PUB | DOI | WoS
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983795Kuhl, U., Artelt, A., & Hammer, B., 2023. For Better or Worse: The Impact of Counterfactual Explanations’ Directionality on User Behavior in xAI. In L. Longo, ed. Explainable Artificial Intelligence. First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part III. Communications in Computer and Information Science. Cham: Springer Nature Switzerland, pp. 280-300.PUB | DOI | WoS
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987580Fumagalli, F., et al., 2023. SHAP-IQ: Unified Approximation of any-order Shapley Interactions. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems.PUB | Download (ext.) | WoS | arXiv
-
-
-
-
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2969734Kuhl, U., Artelt, A., & Hammer, B., 2023. Let's go to the Alien Zoo: Introducing an experimental framework to study usability of counterfactual explanations for machine learning. Frontiers in Computer Science, 5: 1087929.PUB | PDF | DOI | Download (ext.) | WoS | arXiv
-
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2980971Strotherm, J., & Hammer, B., 2023. Fairness-Enhancing Ensemble Classification in Water Distribution Networks. Presented at the International Work-Conference on Artificial Neural Networks (IWANN) 2023, Ponta Delgada.PUB | DOI | Download (ext.)
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2977934Hinder, F., et al., 2023. On the Change of Decision Boundary and Loss in Learning with Concept Drift. In B. Crémilleux, S. Hess, & S. Nijssen, eds. Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings. Lecture Notes in Computer Science. no.13876 Cham: Springer , pp. 182-194.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982167Hinder, F., et al., 2023. On the Hardness and Necessity of Supervised Concept Drift Detection. In M. De Marsico, G. Sanniti di Baja, & A. Fred, eds. Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods ICPRAM. Vol. 1. Setúbal: SCITEPRESS - Science and Technology Publications, pp. 164-175.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969381Schroeder, S., et al., 2023. So Can We Use Intrinsic Bias Measures or Not? In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 403-410.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969382Kenneweg, P., et al., 2023. Debiasing Sentence Embedders Through Contrastive Word Pairs. In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 205-212.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969383Artelt, A., Schulz, A., & Hammer, B., 2023. "Why Here and not There?": Diverse Contrasting Explanations of Dimensionality Reduction. In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 27-38.PUB | DOI | arXiv
-
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983250Vieth, M., Schulz, A., & Hammer, B., 2023. Extending Drift Detection Methods to Identify When Exactly the Change Happened. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 92-104.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983455Liuliakov, A., et al., 2023. One-Class Intrusion Detection with Dynamic Graphs. In L. Iliadis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2023. 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part IV. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 537-549.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983943Muschalik, M., et al., 2023. iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. In D. Koutra, et al., eds. Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 428-445.PUB | DOI
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2981289Hinder, F., et al., 2023. Model-based explanations of concept drift. Neurocomputing, : 126640.PUB | DOI | Download (ext.) | WoS
-
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982830Hinder, F., & Hammer, B., 2023. Feature Selection for Concept Drift Detection. In M. Verleysen, ed. ESANN 2023 Proceedings.PUB
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2983759Koundouri, P., et al., 2023. Behavioral Economics and Neuroeconomics of Environmental Values. Annual Review of Resource Economics, 15(1), p 153-176.PUB | DOI | Download (ext.) | WoS
-
-
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983457Schroeder, S., et al., 2023. Measuring Fairness with Biased Data: A Case Study on the Effects of Unsupervised Data in Fairness Evaluation. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 134-145.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983406Stahlhofen, P., et al., 2023. Adversarial Attacks on Leakage Detectors in Water Distribution Networks. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part II. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 451-463.PUB | DOI | Preprint
-
-
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2962746Artelt, A., et al., 2022. Contrasting Explanations for Understanding and Regularizing Model Adaptations. Neural Processing Letters, 55, p 5273–5297.PUB | PDF | DOI | Download (ext.) | WoS
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2967683Kenneweg, P., Stallmann, D., & Hammer, B., 2022. Novel transfer learning schemes based on Siamese networks and synthetic data. Neural Computing and Applications, 35, p 8423–8436.PUB | PDF | DOI | Download (ext.) | WoS | PubMed | Europe PMC
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982135Jakob, J., Hasenjäger, M., & Hammer, B., 2022. Reject Options for Incremental Regression Scenarios. In E. Pimenidis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 248-259.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969736Kuhl, U., Artelt, A., & Hammer, B., 2022. Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting. In 2022 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM, pp. 2125-2137.PUB | DOI | Download (ext.)
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969235Castellani, A., Schmitt, S., & Hammer, B., 2022. Stream-Based Active Learning with Verification Latency in Non-stationary Environments. In E. Pimenidis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV. Lecture Notes in Computer Science. no.13532 Cham: Springer Nature Switzerland, pp. 260-272.PUB | DOI | Download (ext.)
-
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2967296Velioglu, R., et al., 2022. Explainable Artificial Intelligence for Improved Modeling of Processes. In H. Yin, D. Camacho, & P. Tino, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. no.13756 Cham: Springer International Publishing, pp. 313-325.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2969459Jakob, J., et al., 2022. SAM-kNN Regressor for Online Learning in Water Distribution Networks. In E. Pimenidis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III. Lecture Notes in Computer Science. no.13531 Cham: Springer Nature , pp. 752-762.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969460Artelt, A., et al., 2022. Explaining Reject Options of Learning Vector Quantization Classifiers. In Proceedings of the 14th International Joint Conference on Computational Intelligence. SCITEPRESS - Science and Technology Publications, pp. 249-261.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2966088Hinder, F., et al., 2022. Localization of Concept Drift: Identifying the Drifting Datapoints. In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-9.PUB | DOI | Download (ext.)
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2967410Vieth, M., et al., 2022. Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In H. Yin, D. Camacho, & P. Tino, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. no.13756 Cham: Springer International Publishing, pp. 326-337.PUB | DOI | Download (ext.)
-
-
2022 | Konferenzbeitrag | Angenommen | PUB-ID: 2964534Vaquet, V., et al., Accepted. Federated learning vector quantization for dealing with drift between nodes. Presented at the 30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2022, Bruges.PUB
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2964421Muschalik, M., et al., 2022. Agnostic Explanation of Model Change based on Feature Importance. KI - Künstliche Intelligenz.PUB | DOI | Download (ext.) | WoS
-
2022 | Report | Veröffentlicht | PUB-ID: 2965286Artelt, A., et al., 2022. Faire Algorithmen und die Fairness von Erklärungen: Informatische, rechtliche und ethische Perspektiven, DuEPublico: Duisburg-Essen Publications online, University of Duisburg-Essen, Germany.PUB | DOI | Download (ext.)
-
-
-
2022 | Kurzbeitrag Konferenz / Poster | PUB-ID: 2962861Hinder, F., et al., 2022. Localization of Concept Drift: Identifying the Drifting Datapoints.PUB
-
2022 | Preprint | PUB-ID: 2962919Artelt, A., et al., 2022. One Explanation to Rule them All — Ensemble Consistent Explanations. ArXiv:2205.08974 .PUB | PDF | Download (ext.) | arXiv
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2967096Kenneweg, P., et al., 2022. Intelligent Learning Rate Distribution to Reduce Catastrophic Forgetting in Transformers. In H. Yin, D. Camacho, & P. Tino, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. no.13756 Cham: Springer International Publishing, pp. 252-261.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987492Savic, D., et al., 2022. Long-Term Transitioning of Water Distribution Systems: ERC Water-Futures Project. In Proceedings - 2nd International Join Conference on Water Distribution System Analysis (WDSA)& Computing and Control in the Water Industry (CCWI). València: Editorial Universitat Politècnica de València.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2984050Hinder, F., Vaquet, V., & Hammer, B., 2022. Suitability of Different Metric Choices for Concept Drift Detection. In T. Bouadi, E. Fromont, & E. Hüllermeier, eds. Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 157-170.PUB | DOI
-
2022 | Zeitschriftenaufsatz | PUB-ID: 2978998Paaßen, B., et al., 2022. Reservoir Memory Machines as Neural Computers. IEEE Transactions on Neural Networks and Learning Systems, 33(6), p 2575–2585.PUB | DOI | Download (ext.) | arXiv
-
2022 | Report | Veröffentlicht | PUB-ID: 2965622Hammer, B., et al., 2022. Schlussbericht ITS.ML: Intelligente Technische Systeme der nächsten Generation durch Maschinelles Lernen. Forschungsvorhaben zur automatisierten Analyse von Daten mittels Maschinellen Lernens, Bielefeld: Univ. Bielefeld, Forschungsinstitut für Kognition und Robotik.PUB | PDF | DOI
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958662Schilling, M., et al., 2021. Decentralized control and local information for robust and adaptive decentralized Deep Reinforcement Learning. Neural Networks, 144, p 699-725.PUB | DOI | Download (ext.) | WoS | PubMed | Europe PMC
-
-
-
2021 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982165Liuliakov, A., & Hammer, B., 2021. AutoML Technologies for the Identification of Sparse Models. In H. Yin, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Lecture Notes in Computer Science. no.13113 Cham: Springer , pp. 65-75.PUB | DOI
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969237Castellani, A., Schmitt, S., & Hammer, B., 2021. Estimating the Electrical Power Output of Industrial Devices with End-to-End Time-Series Classification in the Presence of Label Noise. In N. Oliver, et al., eds. Machine Learning and Knowledge Discovery in Databases. Research Track. European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I. Lecture Notes in Computer Science. no.12975 Cham: Springer International Publishing, pp. 469-484.PUB | DOI | Download (ext.)
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2957340Artelt, A., & Hammer, B., 2021. Efficient computation of counterfactual explanations and counterfactual metrics of prototype-based classifiers. Neurocomputing, 470(VSI: ESANN 2020), p 304-317.PUB | DOI | Download (ext.) | WoS
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957373Artelt, A., et al., 2021. Contrastive Explanations for Explaining Model Adaptations. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer , pp. 101-112.PUB | DOI
-
2021 | Preprint | PUB-ID: 2959899Artelt, A., & Hammer, B., 2021. Convex optimization for actionable & plausible counterfactual explanations. arXiv: 2105.07630v1.PUB | Download (ext.) | arXiv
-
2021 | Konferenzbeitrag | PUB-ID: 2959428Hinder, F., et al., 2021. Fast Non-Parametric Conditional Density Estimation using Moment Trees. IEEE Computational Intelligence Magazine.PUB
-
-
-
-
-
-
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957588Artelt, A., & Hammer, B., 2021. Efficient computation of contrastive explanations. In 2021 International Joint Conference on Neural Networks (IJCNN). New York: Institute of Electrical and Electronics Engineers (IEEE), pp. 1-9.PUB | DOI | Download (ext.)
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2954542Paaßen, B., Schulz, A., & Hammer, B., 2021. Reservoir Stack Machines. Neurocomputing, 470, p 352-364.PUB | DOI | Download (ext.) | WoS | arXiv
-
-
2021 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2956229Paassen, B., et al., 2021. Reservoir Memory Machines as Neural Computers. IEEE Transactions on Neural Networks and Learning Systems, , p 1-11.PUB | DOI | Download (ext.) | WoS | PubMed | Europe PMC | arXiv
-
2021 | Zeitschriftenaufsatz | Angenommen | PUB-ID: 2955245Stallmann, D., et al., Accepted. Towards an automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinformatics .PUB | DOI | WoS | PubMed | Europe PMC
-
2021 | Konferenzbeitrag | PUB-ID: 2958664Hermes, L., Hammer, B., & Schilling, M., 2021. Application of Graph Convolutions in a Lightweight Model for Skeletal Human Motion Forecasting. In ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. . pp. 111-116.PUB | arXiv
-
2021 | Konferenzbeitrag | Angenommen | PUB-ID: 2956774Hinder, F., & Hammer, B., Accepted. Concept Drift Segmentation via Kolmogorov Trees. In M. Verleysen, ed. Proceedings of the ESANN, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.PUB
-
2021 | Konferenzbeitrag | Angenommen | PUB-ID: 2955948Brinkrolf, J., & Hammer, B., Accepted. Federated Learning Vector Quantization. In M. Verleysen, ed. Proceedings of the ESANN, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.PUB
-
-
-
2020 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2958328Vaquet, V., & Hammer, B., 2020. Balanced SAM-kNN: Online Learning with Heterogeneous Drift and Imbalanced Data. In I. Farkaš, P. Masulli, & S. Wermter, eds. Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II. Lecture Notes in Computer Science. no. 12397 Cham: Springer, pp. 850-862.PUB | DOI
-
2020 | Konferenzbeitrag | PUB-ID: 2946488Hinder, F., Artelt, A., & Hammer, B., 2020. Towards non-parametric drift detection via Dynamic Adapting Window Independence Drift Detection (DAWIDD). In Proceedings of the 37th International Conference on Machine Learning.PUB | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2946685Artelt, A., & Hammer, B., 2020. Efficient computation of counterfactual explanations of LVQ models. In M. Verleysen, ed. ESANN 2020 - proceedings. Louvain-la-Neuve: Ciaco , pp. 19-24.PUB | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2946761Artelt, A., & Hammer, B., 2020. Convex Density Constraints for Computing Plausible Counterfactual Explanations. In I. Farkas, P. Masulli, & S. Wermter, eds. Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Lecture Notes in Computer Science. no.12396 Cham: Springer, pp. 353-365.PUB | DOI | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957814Krämer, N., et al., 2020. Improving and Evaluating Conversational User Interfaces for Children. In IUI '20: Proceedings of the 25th International Conference on Intelligent User Interfaces. New York: Association for Computing Machinery.PUB
-
2020 | Konferenzbeitrag | PUB-ID: 2943260Schulz, A., Hinder, F., & Hammer, B., 2020. DeepView: Visualizing Classification Boundaries of Deep Neural Networks as Scatter Plots Using Discriminative Dimensionality Reduction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI-20}.PUB | DOI | Download (ext.) | arXiv
-
2020 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982081Biehl, M., et al., 2020. Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework. In A. Vellido, et al., eds. Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, pp. 210-221.PUB | DOI
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2940666Brinkrolf, J., & Hammer, B., 2020. Sparse Metric Learning in Prototype-based Classification. In M. Verleysen, ed. Proceedings of the ESANN, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 375-380.PUB
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt, L., et al., 2020. Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing.PUB | DOI | Download (ext.) | WoS | arXiv
-
-
-
-
2019 | Preprint | PUB-ID: 2959898Artelt, A., & Hammer, B., 2019. On the computation of counterfactual explanations - A survey. arXiv: 1911.07749v1.PUB | Download (ext.) | arXiv
-
2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085Göpfert, J.P., Wersing, H., & Hammer, B., 2019. Recovering Localized Adversarial Attacks. In I. V. Tetko, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 302-311.PUB | DOI
-
-
-
-
2019 | Monographie | PUB-ID: 2935200Paaßen, B., Artelt, A., & Hammer, B., 2019. Lecture Notes on Applied Optimization, Faculty of Technology, Bielefeld University.PUB | Dateien verfügbar
-
2019 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2934458Prahm, C., et al., 2019. Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), p 956-962.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt, L., et al., 2019. Feature Relevance Bounds for Ordinal Regression. In M. Verleysen, ed. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019). Louvain-la-Neuve: i6doc.PUB | Download (ext.) | arXiv
-
-
2019 | Konferenzbeitrag | Angenommen | PUB-ID: 2937841Hosseini, B., & Hammer, B., Accepted. Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection. Presented at the The 28th ACM International Conference on Information and Knowledge Management (CIKM) , Beijing.PUB | Datei | arXiv
-
2019 | Report | Veröffentlicht | PUB-ID: 2937888Krämer, N., et al., 2019. KI-basierte Sprachassistenten im Alltag: Forschungsbedarf aus informatischer, psychologischer, ethischer und rechtlicher Sicht, Universität Duisburg-Essen, Universitätsbibliothek.PUB | DOI | Download (ext.)
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2937839Hosseini, B., & Hammer, B., 2019. Interpretable Discriminative Dimensionality Reduction and Feature Selection on the Manifold. Presented at the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML), Würzburg.PUB | Datei | arXiv
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456Pfannschmidt, L., et al., 2019. FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy.PUB | PDF | DOI | arXiv
-
-
2019 | Konferenzbeitrag | PUB-ID: 2930303Hosseini, B., & Hammer, B., 2019. Multiple-Kernel Dictionary Learning for Reconstruction and Clustering of Unseen Multivariate Time-series. In M. Verleysen, ed. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019).PUB | arXiv
-
-
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2931283Queißer, J., et al., 2018. Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto. Presented at the International Conference on Development and Learning and on Epigenetic Robotics 2018 (ICDL-EPIROB2018), Tokyo .PUB | PDF
-
2018 | Datenpublikation | PUB-ID: 2930611Hülsmann, F., et al., 2018. Classification of motor errors to provide real-time feedback for sports coaching in virtual reality - A case study in squats and Tai Chi pushes (Data), Bielefeld University.PUB | Dateien verfügbar | DOI
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2930862Hülsmann, F., et al., 2018. Classification of motor errors to provide real-time feedback for sports coaching in virtual reality — A case study in squats and Tai Chi pushes. Computers & Graphics, 76, p 47-59.PUB | DOI | Download (ext.) | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982092Queisser, J.F., et al., 2018. Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto. In 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, pp. 39-45.PUB | DOI
-
2018 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982090Hosseini, B., & Hammer, B., 2018. Non-negative Local Sparse Coding for Subspace Clustering. In W. Duivesteijn, A. Siebes, & A. Ukkonen, eds. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 137-150.PUB | DOI
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982089Specht, F., et al., 2018. Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. In 2018 IEEE 16th International Conference on Industrial Informatics (INDIN). IEEE, pp. 760-765.PUB | DOI
-
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982086Li, P., Niggemann, O., & Hammer, B., 2018. A Geometric Approach to Clustering Based Anomaly Detection for Industrial Applications. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 5345-5352.PUB | DOI
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2932412Straat, M., et al., 2018. Statistical Mechanics of On-Line Learning Under Concept Drift. ENTROPY, 20(10): 775.PUB | DOI | WoS | PubMed | Europe PMC
-
2018 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2917896Lux, M., et al., 2018. flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics, 34(13), p 2245-2253.PUB | DOI | WoS | PubMed | Europe PMC
-
2018 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2933557Meyer, S., et al., 2018. Inferring Temporal Structure from Predictability in Bumblebee Learning Flight. In H. Yin, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2018. Lecture Notes in Computer Science. no.11314 Cham: Springer International Publishing, pp. 508-519.PUB | DOI
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2918254Brinkrolf, J., Berger, K., & Hammer, B., 2018. Differential private relevance learning. In M. Verleysen, ed. Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018). pp. 555-560.PUB | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2911900Paaßen, B., Göpfert, C., & Hammer, B., 2018. Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters, 48(2), p 669-689.PUB | DOI | Download (ext.) | WoS | arXiv
-
2018 | Preprint | Veröffentlicht | PUB-ID: 2921209Hosseini, B., & Hammer, B., 2018. Non-Negative Local Sparse Coding for Subspace Clustering. Advances in Intelligent Data Analysis XVII. IDA 2018.PUB | Datei | Download (ext.) | arXiv
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2919598Hosseini, B., & Hammer, B., 2018. Feasibility Based Large Margin Nearest Neighbor Metric Learning. In ESANN 2018. Proceedings of 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 219-224.PUB | arXiv
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2914505Paaßen, B., et al., 2018. Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing, 298, p 122-133.PUB | DOI | Download (ext.) | WoS | arXiv
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2921316Göpfert, J.P., Hammer, B., & Wersing, H., 2018. Mitigating Concept Drift via Rejection. In V. Kurkova, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2018. Proceedings, Part I. Lecture Notes in Computer Science. no.11139 Cham: Springer.PUB | PDF | DOI
-
-
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2913389Paaßen, B., et al., 2018. The Continuous Hint Factory - Providing Hints in Vast and Sparsely Populated Edit Distance Spaces. Journal of Educational Data Mining, 10(1), p 1-35.PUB | Download (ext.) | arXiv
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2919844Paaßen, B., et al., 2018. Tree Edit Distance Learning via Adaptive Symbol Embeddings. In J. Dy & A. Krause, eds. Proceedings of the 35th International Conference on Machine Learning (ICML 2018). Proceedings of Machine Learning Research. no.80 pp. 3973-3982.PUB | Download (ext.) | arXiv
-
-
-
-
-
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909369Paaßen, B., et al., 2017. An EM transfer learning algorithm with applications in bionic hand prostheses. In M. Verleysen, ed. Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Bruges: i6doc.com, pp. 129-134.PUB | PDF
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2914945Brinkrolf, J., & Hammer, B., 2017. Probabilistic extension and reject options for pairwise LVQ. In 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM). Piscataway, NJ: IEEE.PUB | DOI
-
-
2017 | Konferenzbeitrag | PUB-ID: 2909371Biehl, M., Hammer, B., & Villmann, T., 2017. Prototype based models for the supervised learning of classificaton schemes. In Proc. of the IAU Symposium 325 on Astroinformatics, Sorrento/Italy, October 2016. pp. in press.PUB
-
2017 | Konferenzbeitrag | PUB-ID: 2914950Brinkrolf, J., Berger, K., & Hammer, B., 2017. Differential Privacy for Learning Vector Quantization. In New Challenges in Neural Computation.PUB
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201Göpfert, C., Pfannschmidt, L., & Hammer, B., 2017. Feature Relevance Bounds for Linear Classification. In M. Verleysen, ed. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco - i6doc.com, pp. 187--192.PUB | Dateien verfügbar | Download (ext.)
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2913752Göpfert, J.P., et al., 2017. Effects of Variability in Synthetic Training Data on Convolutional Neural Networks for 3D Head Reconstruction. In 2017 SSCI Proceedings. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE.PUB | PDF | DOI
-
-
2017 | Konferenzbeitrag | PUB-ID: 2909370Frenay, B., & Hammer, B., 2017. Label-Noise-Tolerant Classification for Streaming Data. In IEEE International Joint Conference on Neural Neworks.PUB
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2914141Aswolinskiy, W., & Hammer, B., 2017. Unsupervised Transfer Learning for Time Series via Self-Predictive Modelling - First Results. In Proceedings of the Workshop on New Challenges in Neural Computation (NC2). Machine Learning Reports. no.03/2017 Bielefeld: Universität Bielefeld, CITEC.PUB | PDF
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909037Prahm, C., et al., 2017. Echo State Networks as Novel Approach for Low-Cost Myoelectric Control. In A. ten Telje, et al., eds. Proceedings of the 16th Conference on Artificial Intelligence in Medicine (AIME 2017). Lecture Notes in Computer Science. no.10259 Springer, pp. 338--342.PUB | Dateien verfügbar | DOI
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2915274Göpfert, C., Göpfert, J.P., & Hammer, B., 2017. Analyzing Feature Relevance for Linear Reject Option SVM using Relevance Intervals. In Proceedings of the 2017 NIPS workshop on Transparent and Interpretable Machine Learning in Safety Critical Environments.PUB | PDF
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904469Hosseini, B., et al., 2016. Non-Negative Kernel Sparse Coding for the Analysis of Motion Data. In A. E.P. Villa, P. Masulli, & A. Javier Pons Rivero, eds. Artificial Neural Networks and Machine Learning – ICANN 2016. Lecture Notes in Computer Science. no.9887 Cham: Springer, pp. 506-514.PUB | PDF | DOI | Download (ext.) | arXiv
-
-
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909367Kummert, J., et al., 2016. Local Reject Option for Deterministic Multi-class SVM. In A. E.P. Villa, P. Masulli, & A. J. Pons Rivero, eds. Artificial Neural Networks and Machine Learning - ICANN 2016 - 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II. Lecture Notes in Computer Science. no.9887 Cham: Springer Nature, pp. 251--258.PUB | DOI
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904509Paaßen, B., Jensen, J., & Hammer, B., 2016. Execution Traces as a Powerful Data Representation for Intelligent Tutoring Systems for Programming. In T. Barnes, M. Chi, & M. Feng, eds. Proceedings of the 9th International Conference on Educational Data Mining. Raleigh, North Carolina, USA: International Educational Datamining Society, pp. 183-190.PUB | Download (ext.)
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900676Paaßen, B., Göpfert, C., & Hammer, B., 2016. Gaussian process prediction for time series of structured data. In M. Verleysen, ed. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco - i6doc.com, pp. 41--46.PUB | PDF
-
2016 | Konferenzbeitrag | E-Veröff. vor dem Druck | PUB-ID: 2904909Schulz, A., & Hammer, B., 2016. Discriminative Dimensionality Reduction in Kernel Space. In ESANN2016 Proceedings. 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium,27-29 April 2016. i6doc.com.PUB | PDF
-
2016 | Konferenzbeitrag | PUB-ID: 2909365Brinkrolf, J., et al., 2016. Virtual optimisation for improved production planning. In New Challenges in Neural Computation.PUB
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2905729Göpfert, C., Paaßen, B., & Hammer, B., 2016. Convergence of Multi-pass Large Margin Nearest Neighbor Metric Learning. In A. E.P. Villa, P. Masulli, & A. J. Pons Rivero, eds. Artificial Neural Networks and Machine Learning – ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II. Lecture Notes in Computer Science. no.9887 Cham: Springer Nature, pp. 510-517.PUB | PDF | DOI
-
2016 | Konferenzbeitrag | PUB-ID: 2908455Losing, V., Hammer, B., & Wersing, H., 2016. Dedicated Memory Models for Continual Learning in the Presence of Concept Drift. Presented at the Continual Learning Workshop of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona.PUB | PDF
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2905855Paaßen, B., Schulz, A., & Hammer, B., 2016. Linear Supervised Transfer Learning for Generalized Matrix LVQ. In B. Hammer, T. Martinetz, & T. Villmann, eds. Proceedings of the Workshop New Challenges in Neural Computation 2016. Machine Learning Reports. pp. 11-18.PUB | Download (ext.)
-
-
2016 | Konferenzbeitrag | PUB-ID: 2909368Geppert, er, & Hammer, B., 2016. Incremental learning algorithms and applications. In ESANN.PUB
-
2016 | Konferenzbeitrag | PUB-ID: 2905195Fischer, L., Hammer, B., & Wersing, H., 2016. Online Metric Learning for an Adaptation to Confidence Drift. In Proceedings of International Joint Conference on Neural Networks (IJCNN). Vancouver: IEEE, pp. 748-755.PUB
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904178Prahm, C., et al., 2016. Transfer Learning for Rapid Re-calibration of a Myoelectric Prosthesis after Electrode Shift. In J. Ibáñez, et al., eds. Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016). Springer, pp. 153--157.PUB | PDF | DOI | Download (ext.)
-
-
2016 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2910957Biehl, M., Hammer, B., & Villmann, T., 2016. Prototype-based models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), p 92-111.PUB | DOI | WoS | PubMed | Europe PMC
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909366Villmann, T., et al., 2016. Self-Adjusting Reject Options in Prototype Based Classification. In E. Merényi, M. J. Mendenhall, & P. O'Driscoll, eds. Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016. Advances in Intelligent Systems and Computing. no.428 Cham: Springer International Publishing, pp. 269-279.PUB | DOI
-
-
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2752948Gross, S., et al., 2015. Learning Feedback in Intelligent Tutoring Systems. Report of the FIT Project, Conducted from December 2011 to March 2015. KI - Künstliche Intelligenz, 29(4), p 413-418.PUB | PDF | DOI | Download (ext.) | WoS
-
2015 | Preprint | Veröffentlicht | PUB-ID: 2901613Lux, M., Hammer, B., & Sczyrba, A., 2015. Automated Contamination Detection in Single-Cell Sequencing. bioRxiv.PUB
-
-
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2783165Hosseini, B., & Hammer, B., 2015. Efficient Metric Learning for the Analysis of Motion Data. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE.PUB | DOI | Download (ext.) | arXiv
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2724156Paaßen, B., Mokbel, B., & Hammer, B., 2015. Adaptive structure metrics for automated feedback provision in Java programming. In M. Verleysen, ed. Proceedings of the ESANN, 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 307-312.PUB | PDF
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2710031Mokbel, B., et al., 2015. Metric learning for sequences in relational LVQ. Neurocomputing, 169(SI), p 306-322.PUB | PDF | DOI | Download (ext.) | WoS
-
-
2015 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2900303Schulz, A., & Hammer, B., 2015. Visualization of Regression Models Using Discriminative Dimensionality Reduction. In Computer Analysis of Images and Patterns. Lecture Notes in Computer Science. no.9257 Cham: Springer Science + Business Media, pp. 437-449.PUB | PDF | DOI
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900325Blöbaum, P., Schulz, A., & Hammer, B., 2015. Unsupervised Dimensionality Reduction for Transfer Learning. In M. Verleysen, ed. Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco, pp. 507-512.PUB | PDF
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900319Schulz, A., & Hammer, B., 2015. Discriminative dimensionality reduction for regression problems using the Fisher metric. In 2015 International Joint Conference on Neural Networks (IJCNN). Institute of Electrical & Electronics Engineers (IEEE), pp. 1-8.PUB | DOI
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774707Fischer, L., Hammer, B., & Wersing, H., 2015. Certainty-based Prototype Insertion/Deletion for Classification with Metric Adaptation. In ESANN, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 7-12.PUB
-
2015 | Konferenzbeitrag | PUB-ID: 2774721Fischer, L., Hammer, B., & Wersing, H., 2015. Combining Offline and Online Classifiers for Life-long Learning. In IJCNN, International Joint Conference on Neural Networks. pp. 2808-2815.PUB
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2762087Paaßen, B., Mokbel, B., & Hammer, B., 2015. A Toolbox for Adaptive Sequence Dissimilarity Measures for Intelligent Tutoring Systems. In O. C. Santos, et al., eds. Proceedings of the 8th International Conference on Educational Data Mining. International Educational Datamining Society, pp. 632-632.PUB | Download (ext.)
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2752955Walter, O., et al., 2015. Autonomous Learning of Representations. KI - Künstliche Intelligenz, 29(4), p 339–351.PUB | PDF | DOI | Download (ext.) | WoS
-
-
-
-
-
-
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982100Gross, S., et al., 2014. How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning. In S. Trausan-Matu, et al., eds. Intelligent Tutoring Systems. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 340-347.PUB | DOI
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982099Biehl, M., Hammer, B., & Villmann, T., 2014. Distance Measures for Prototype Based Classification. In L. Grandinetti, T. Lippert, & N. Petkov, eds. Brain-Inspired Computing. International Workshop, BrainComp 2013, Cetraro, Italy, July 8-11, 2013, Revised Selected Papers. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 100-116.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900320Frenay, B., et al., 2014. Valid interpretation of feature relevance for linear data mappings. In 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). Piscataway, NJ: Institute of Electrical & Electronics Engineers (IEEE), pp. 149-156.PUB | PDF | DOI
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2678214Hofmann, D., et al., 2014. Learning interpretable kernelized prototype-based models. Neurocomputing, 141, p 84-96.PUB | DOI | Download (ext.) | WoS
-
-
-
2014 | Konferenzbeitrag | PUB-ID: 2909360Gross, S., et al., 2014. How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning. In S. Trausan-Matu, et al., eds. Intelligent Tutoring Systems. Lecture Notes in Computer Science. no.8474 Springer, pp. 340-347.PUB
-
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774643Fischer, L., et al., 2014. Rejection Strategies for Learning Vector Quantization – A Comparison of Probabilistic and Deterministic Approaches. In T. Villmann, et al., eds. Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing. no.295 Cham: Springer International Publishing, pp. 109-118.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548Fischer, L., Hammer, B., & Wersing, H., 2014. Rejection strategies for learning vector quantization. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 41-46.PUB
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774498Fischer, L., Hammer, B., & Wersing, H., 2014. Local Rejection Strategies for Learning Vector Quantization. In S. Wermter, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2014. Lecture Notes in Computer Science. no.8681 Cham: Springer International Publishing, pp. 563-570.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673554Mokbel, B., Paaßen, B., & Hammer, B., 2014. Adaptive distance measures for sequential data. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 265-270.PUB | PDF
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673559Hammer, B., He, H., & Martinetz, T., 2014. Learning and modeling big data. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 343-352.PUB
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2734058Gross, S., et al., 2014. Example-based feedback provision using structured solution spaces. International Journal of Learning Technology, 9(3), p 248-280.PUB | DOI | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2710067Mokbel, B., Paaßen, B., & Hammer, B., 2014. Efficient Adaptation of Structure Metrics in Prototype-Based Classification. In S. Wermter, et al., eds. Artificial Neural Networks and Machine Learning - ICANN 2014 - 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014. Proceedings. Lecture Notes in Computer Science. no.8681 Springer, pp. 571-578.PUB | PDF | DOI | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673545Nebel, D., Hammer, B., & Villmann, T., 2014. Supervised Generative Models for Learning Dissimilarity Data. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 35-40.PUB
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673557Schulz, A., Gisbrecht, A., & Hammer, B., 2014. Relevance learning for dimensionality reduction. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 165-170.PUB
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2900324Gisbrecht, A., Schulz, A., & Hammer, B., 2014. Discriminative Dimensionality Reduction for the Visualization of Classifiers. In Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing. no.318 Cham: Springer Science + Business Media, pp. 39-56.PUB | DOI
-
2014 | Konferenzbeitrag | PUB-ID: 2909361Hammer, B., et al., 2014. Generative versus Discriminative Prototype Based Classification. In Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, {WSOM} 2014, Mittweida, Germany, July, 2-4, 2014. Cham: Springer International Publishing, pp. 123--132.PUB | DOI
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982105Schleif, F.-M., Zhu, X., & Hammer, B., 2013. Sparse Prototype Representation by Core Sets. In H. Yin, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2013. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 302-309.PUB | DOI
-
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982102Hofmann, D., Gisbrecht, A., & Hammer, B., 2013. Efficient Approximations of Kernel Robust Soft LVQ. In P. A. Estévez, J. C. Príncipe, & P. Zegers, eds. Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 183-192.PUB | DOI
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982101Nebel, D., Hammer, B., & Villmann, T., 2013. A Median Variant of Generalized Learning Vector Quantization. In M. Lee, et al., eds. Neural Information Processing. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 19-26.PUB | DOI
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2623500Gisbrecht, A., et al., 2013. Nonlinear dimensionality reduction for cluster identification in metagenomic samples. In E. Banissi, ed. 17th International Conference on Information Visualisation IV 2013. Piscataway, NJ: IEEE, pp. 174-179.PUB | DOI
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625185Mokbel, B., et al., 2013. Domain-Independent Proximity Measures in Intelligent Tutoring Systems. In S. K. D'Mello, R. A. Calvo, & A. Olney, eds. Proceedings of the 6th International Conference on Educational Data Mining (EDM). pp. 334-335.PUB | Download (ext.)
-
2013 | Konferenzbeitrag | PUB-ID: 2909358Strickert, M., et al., 2013. Regularization and Improved Interpretation of Linear Data Mappings and Adaptive Distance Measures. In IEEE SSCI CIDM 2013. IEEE Computational Intelligence Society, pp. 10-17.PUB
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622456Schulz, A., Gisbrecht, A., & Hammer, B., 2013. Using Nonlinear Dimensionality Reduction to Visualize Classifiers. In I. Rojas, G. Joya, & J. Gabestany, eds. Advances in computational intelligence. Proceedings. Vol 1. Lecture Notes in Computer Science. no.7902 Springer, pp. 59-68.PUB | DOI | WoS
-
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622467Schulz, A., Gisbrecht, A., & Hammer, B., 2013. Classifier inspection based on different discriminative dimensionality reductions. In Workshop NC^2 2013. TR Machine Learning Reports, pp. 77-86.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625194Gisbrecht, A., et al., 2013. Visualizing Dependencies of Spectral Features using Mutual Information. In ESANN, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 573-578.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625199Hofmann, D., & Hammer, B., 2013. Sparse approximations for kernel learning vector quantization. In ESANN.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625202Schleif, F.-M., Zhu, X., & Hammer, B., 2013. Sparse prototype representation by core sets. In et.al Hujun Yin, ed. IDEAL 2013.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625207Gross, S., et al., 2013. Towards Providing Feedback to Students in Absence of Formalized Domain Models. In AIED. pp. 644-648.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615717Zhu, X., Schleif, F.-M., & Hammer, B., 2013. Secure Semi-supervised Vector Quantization for Dissimilarity Data. In I. Rojas, G. Joya, & J. Cabestany, eds. IWANN (1). Lecture Notes in Computer Science. no.7902 Springer, pp. 347-356.PUB | DOI
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615701Zhu, X., Schleif, F.-M., & Hammer, B., 2013. Semi-Supervised Vector Quantization for proximity data. In Proceedings of ESANN 2013. pp. 89-94.PUB
-
2013 | Konferenzbeitrag | PUB-ID: 2909359Nebel, D., Hammer, B., & Villmann, T., 2013. A Median Variant of Generalized Learning Vector Quantization. In ICONIP (2). pp. 19-26.PUB
-
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982106Gisbrecht, A., Hofmann, D., & Hammer, B., 2012. Discriminative Dimensionality Reduction Mappings. In J. Hollmén, F. Klawonn, & A. Tucker, eds. Advances in Intelligent Data Analysis XI. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 126-138.PUB | DOI
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982107Hofmann, D., & Hammer, B., 2012. Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin, eds. Artificial Neural Networks in Pattern Recognition. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 14-23.PUB | DOI
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2625232Gisbrecht, A., et al., 2012. Linear Time Relational Prototype Based Learning. International Journal of Neural Systems, 22(05): 1250021.PUB | DOI | WoS | PubMed | Europe PMC
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622449Schulz, A., et al., 2012. How to visualize a classifier? In Proceedings of the Workshop - New Challenges in Neural Computation 2012. Machine Learning Reports, pp. 73-83.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625260Gisbrecht, A., et al., 2012. Out-of-sample kernel extensions for nonparametric dimensionality reduction. In ESANN 2012. pp. 531-536.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625265Gisbrecht, A., et al., 2012. Relevance learning for time series inspection. In M. Verleysen, ed. ESANN 2012. pp. 489-494.PUB
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2671172Hofmann, D., Gisbrecht, A., & Hammer, B., 2012. Discriminative probabilistic prototype based models in kernel space. In Workshop NC^2 2012. TR Machine Learning Reports.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536426Mokbel, B., et al., 2012. How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? In N. Mana, F. Schwenker, & E. Trentin, eds. Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Lecture Notes in Artificial Intelligence. no.7477 Springer Berlin Heidelberg, pp. 1-13.PUB | PDF | DOI
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625238Hofmann, D., Gisbrecht, A., & Hammer, B., 2012. Efficient Approximations of Kernel Robust Soft LVQ. In WSOM.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625271Bouveyron, C., Hammer, B., & Villmann, T., 2012. Recent developments in clustering algorithms. In M. Verleysen, ed. ESANN 2012. pp. 447-458.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625276Gisbrecht, A., Mokbel, B., & Hammer, B., 2012. Linear Basis-Function t-SNE for Fast Nonlinear Dimensionality Reduction. In IJCNN.PUB
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625242Gross, S., et al., 2012. Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces. In DeLFI. pp. 27-38.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625247Gisbrecht, A., Hofmann, D., & Hammer, B., 2012. Discriminative Dimensionality Reduction Mappings. In J. Hollmén, F. Klawonn, & A. Tucker, eds. Advances in Intelligent Data Analysis XI - 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings. Lecture Notes in Computer Science. no.7619 Springer, pp. 126-138.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625254Hofmann, D., & Hammer, B., 2012. Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin, eds. Artificial Neural Networks in Pattern Recognition - 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012, Trento, Italy, September 17-19, 2012. Proceedings. Lecture Notes in Computer Science. no.7477 Springer, pp. 14-23.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615750Schleif, F.-M., et al., 2012. Fast approximated relational and kernel clustering. In Proceedings of ICPR 2012. IEEE, pp. 1229-1232.PUB
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536437Gross, S., et al., 2012. Cluster based feedback provision strategies in intelligent tutoring systems. In Proceedings of the 11th international conference on Intelligent Tutoring Systems. Berlin, Heidelberg: Springer-Verlag, pp. 699-700.PUB | PDF | DOI | Download (ext.)
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536444Gross, S., et al., 2012. Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces. In J. Desel, et al., eds. DeLFI 2012: Die 10. e-Learning Fachtagung Informatik. GI-Edition : Proceedings. no.207 Hagen, Germany: Köllen, pp. 27-38.PUB | PDF
-
-
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2489405Bunte, K., et al., 2012. Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks, 26, p 159-173.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2012 | Konferenzbeitrag | PUB-ID: 2909356Mokbel, B., et al., 2012. Visualizing the quality of dimensionality reduction. In M. Verleysen, ed. ESANN 2012. pp. 179--184.PUB
-
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2534905Schleif, F.-M., Gisbrecht, A., & Hammer, B., 2012. Relevance learning for short high-dimensional time series in the life sciences. In IEEE Computational Intelligence Society & Institute of Electrical and Electronics Engineers, eds. IJCNN. Piscataway, NJ: IEEE, pp. 1-8.PUB | DOI
-
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982113Hammer, B., et al., 2011. Topographic Mapping of Dissimilarity Data. In J. Laaksonen & T. Honkela, eds. Advances in Self-Organizing Maps. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-15.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982112Hammer, B., Schleif, F.-M., & Zhu, X., 2011. Relational Extensions of Learning Vector Quantization. In B. - L. Lu, L. Zhang, & J. Kwok, eds. Neural Information Processing. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 481-489.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982111Hammer, B., et al., 2011. Prototype-Based Classification of Dissimilarity Data. In J. Gama, E. Bradley, & J. Hollmén, eds. Advances in Intelligent Data Analysis X. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 185-197.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982110Schleif, F.-M., Gisbrecht, A., & Hammer, B., 2011. Accelerating Kernel Neural Gas. In T. Honkela, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2011. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 150-158.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982109Hammer, B., et al., 2011. A General Framework for Dimensionality Reduction for Large Data Sets. In J. Laaksonen & T. Honkela, eds. Advances in Self-Organizing Maps. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 277-287.PUB | DOI
-
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276480Gisbrecht, A., et al., 2011. Linear time heuristics for topographic mapping of dissimilarity data. In Intelligent Data Engineering and Automated Learning - IDEAL 2011: IDEAL 2011, 12th international conference, Norwich, UK, September 7 - 9, 2011 ; proceedings. Lecture Notes in Computer Science. no.6936 Berlin, Heidelberg: Springer, pp. 25-33.PUB | DOI
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276485Hammer, B., et al., 2011. Topographic Mapping of Dissimilarity Data. In WSOM'11.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276492Schleif, F.-M., Gisbrecht, A., & Hammer, B., 2011. Accelerating Kernel Neural Gas. In S. Kaski, et al., eds. ICANN'2011.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276500Kaestner, M., et al., 2011. Generalized Functional Relevance Learning Vector Quantization. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D side, pp. pp. 93-98.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276512Hammer, B., et al., 2011. A general framework for dimensionality reduction for large data sets. In WSOM'11.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276517Bunte, K., Biehl, M., & Hammer, B., 2011. Supervised dimension reduction mappings. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D side, pp. pp. 281-286.PUB
-
-
-
2011 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2309980Schleif, F.-M., et al., 2011. Efficient Kernelized Prototype-based Classification. International Journal of Neural Systems, 21(06), p 443-457.PUB | DOI | WoS | PubMed | Europe PMC
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276522Gisbrecht, A., et al., 2011. Accelerating dissimilarity clustering for biomedical data analysis. In IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. pp. pp.154-161.PUB
-
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2091665Zhu, X., & Hammer, B., 2011. Patch Affinity Propagation. Presented at the 19th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium.PUB
-
-
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982117Gisbrecht, A., et al., 2010. Visualizing Dissimilarity Data Using Generative Topographic Mapping. In R. Dillmann, et al., eds. KI 2010: Advances in Artificial Intelligence. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 227-237.PUB | DOI
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982116Villmann, T., et al., 2010. The Mathematics of Divergence Based Online Learning in Vector Quantization. In F. Schwenker & N. El Gayar, eds. Artificial Neural Networks in Pattern Recognition. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 108-119.PUB | DOI
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982115Arnonkijpanich, B., & Hammer, B., 2010. Global Coordination Based on Matrix Neural Gas for Dynamic Texture Synthesis. In F. Schwenker & N. El Gayar, eds. Artificial Neural Networks in Pattern Recognition. 4th IAPR TC3 Workshop, ANNPR 2010, Cairo, Egypt, April 11-13, 2010. Proceedings. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 84-95.PUB | DOI
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276543Gisbrecht, A., Mokbel, B., & Hammer, B., 2010. The Nystrom approximation for relational generative topographic mappings. In NIPS workshop on challenges of Data Visualization.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994127Villmann, T., et al., 2010. Divergence Based Online Learning in Vector Quantization. In L. Rutkowski, et al., eds. Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, 6113. Berlin, Heidelberg: Springer, pp. 479-486.PUB | DOI
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1796018Arnonkijpanich, B., Hasenfuss, A., & Hammer, B., 2010. Local matrix learning in clustering and applications for manifold visualization. Neural Networks, 23(4), p 476-486.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993273Arnonkijpanich, B., & Hammer, B., 2010. Global Coordination based on Matrix Neural Gas for Dynamic Texture Synthesis. In N. El Gayar & F. Schwenker, eds. ANNPR'2010. Lecture Notes in Artificial Intelligence, 5998. Springer, pp. 84-95.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993367Bunte, K., et al., 2010. Exploratory Observation Machine (XOM) with Kullback-Leibler Divergence for Dimensionality Reduction and Visualization. In M. Verleysen, ed. ESANN'10. Proceedings of the 18th European Symposium on Artificial Neural Networks. Evere: D side, pp. 87-92.PUB
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1929672Witoelar, A.W., et al., 2010. Window-Based Example Selection in Learning Vector Quantization. Neural Computing, 22(11), p 2924-2961.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1794373Hammer, B., & Hasenfuss, A., 2010. Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation, 22(9), p 2229-2284.PUB | DOI | WoS | PubMed | Europe PMC
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1795962Schneider, P., et al., 2010. Regularization in Matrix Relevance Learning. IEEE Transactions on Neural Networks, 21(5), p 831-840.PUB | DOI | WoS | PubMed | Europe PMC
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993978Schleif, F.-M., et al., 2010. Generalized derivative based Kernelized learning vector quantization. In C. Fyfe, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2010 11th International Conference, Paisley, UK, September 1-3, 2010. Proceedings. Berlin u.a.: Springer, pp. 21-28.PUB | DOI
-
-
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993536Hammer, B., & Hasenfuss, A., 2010. Clustering very large dissimilarity data sets. In F. Schwenker & N. El Gayar, eds. Artificial Neural Networks in Pattern Recognition (ANNPR 2010). Proceedings. Lecture Notes in Artificial Intelligence. no.5998 Berlin: Springer, pp. 259-273.PUB | DOI
-
2010 | Konferenzband | Veröffentlicht | PUB-ID: 2276535B. Hammer, et al., eds., 2010. Learning paradigms in dynamic environments, 25.07.10-30.07.20, no.10302, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276547Mokbel, B., Gisbrecht, A., & Hammer, B., 2010. On the effect of clustering on quality assessment measures for dimensionality reduction. In NIPS workshop on Challenges of Data Visualization.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993448Gisbrecht, A., & Hammer, B., 2010. Relevance learning in generative topographic maps. In M. Verleysen, ed. ESANN'10. Evere: D side, pp. 387-392.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993452Gisbrecht, A., Mokbel, B., & Hammer, B., 2010. Relational Generative Topographic Map. In M. Verleysen, ed. ESANN'10. Evere: D side, pp. 277-282.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993457Gisbrecht, A., et al., 2010. Visualizing Dissimilarity Data using generative topographic mapping. In R. Dillmann, et al., eds. KI'2010. pp. 227-237.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994138Villmann, T., et al., 2010. The Mathematics of Divergence Based Online Learning in Vector Quanitzation. In N. El Gayar & F. Schwenker, eds. ANNPR'2010. Berlin, Heidelberg: Springer, pp. 108-119.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994227Villmann, T., Schleif, F.-M., & Hammer, B., 2010. Sparse representation of data. In M. Verleysen, ed. ESANN'10. D side, pp. 225-234.PUB
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982118Villmann, T., & Hammer, B., 2009. Functional Principal Component Learning Using Oja’s Method and Sobolev Norms. In J. C. Príncipe & R. Miikkulainen, eds. Advances in Self-Organizing Maps. 7th International Workshop, WSOM 2009, St. Augustine, FL, USA, June 8-10, 2009. Proceedings. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325-333.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993679Hammer, B., Schrauwen, B., & Steil, J.J., 2009. Recent advances in efficient learning of recurrent networks. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. Brugge: d-facto, pp. 213-226.PUB
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993984Schleif, F.-M., et al., 2009. Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine, 45(2-3), p 215-228.PUB | DOI | WoS | PubMed | Europe PMC
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1994160Villmann, T., Hammer, B., & Biehl, M., 2009. Some theoretical aspects of the neural gas vector quantizer. In M. Biehl, et al., eds. Similarity Based Clustering. Lecture Notes Artificial Intelligence, 5400. Berlin, Heidelberg: Springer, pp. 23-34.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994305Witolaer, A., Biehl, M., & Hammer, B., 2009. Equilibrium properties of offline LVQ. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. d-side publications, pp. 535-540.PUB
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993326Biehl, M., et al., 2009. Metric learning for prototype based classification. In M. Bianchini, M. Maggini, & F. Scarselli, eds. Innovations in Neural Information – Paradigms and Applications. Studies in Computational Intelligence, 247. Berlin: Springer, pp. 183-199.PUB | DOI
-
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993994Schneider, P., Biehl, M., & Hammer, B., 2009. Hyperparameter Learning in robust soft LVQ. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. d-side publications, pp. 517-522.PUB
-
2009 | Konferenzband | Veröffentlicht | PUB-ID: 1994310M. Biehl, et al., eds., 2009. Similarity-based learning on structures, no.9081, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.PUB
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994008Schneider, P., Biehl, M., & Hammer, B., 2009. Distance learning in discriminative vector quantization. Neural Computation, 21(10), p 2942-2969.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993555Hammer, B., Hasenfuss, A., & Rossi, F., 2009. Median topographic maps for biological data sets. In M. Biehl, et al., eds. Similarity Based Clustering. Lecture Notes Artificial Intelligence, 5400. Berlin, Heidelberg: Springer, pp. 92-117.PUB | DOI
-
2009 | Report | Veröffentlicht | PUB-ID: 1993316Biehl, M., et al., 2009. Stationarity of Matrix Relevance Learning Vector Quantization, Machine Learning Reports, Leipzig: Universität Leipzig.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993361Bunte, K., Hammer, B., & Biehl, M., 2009. Nonlinear dimension reduction and visualization of labeled data. In X. Jiang & N. Petkov, eds. International Conference on Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, 5702. no.5702 Berlin: Springer, pp. 1162-1170.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993429Geweniger, T., et al., 2009. Median variant of fuzzy-c-means. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. Evere: d-side publications, pp. 523-528.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993835Mokbel, B., Hasenfuss, A., & Hammer, B., 2009. Graph-based Representation of Symbolic Musical Data. In A. Torsello, et al., eds. Graph-Based Representation in Pattern Recognition (GbRPR 2009). Lecture Notes in Computer Science, 5534. Lecture notes in computer science. no.5534 Berlin: Springer, pp. 42-51.PUB | DOI
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994004Schneider, P., Biehl, M., & Hammer, B., 2009. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12), p 3532-3561.PUB | DOI | WoS | PubMed | Europe PMC
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993356Bunte, K., Biehl, M., & Hammer, B., 2009. Nonlinear discriminative data visualization. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. Evere: d-side publications, pp. 65-70.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994152Villmann, T., & Hammer, B., 2009. Functional principal component learning using Oja's method and Sobolev norms. In J. C. Principe & R. Miikkulainen, eds. Advances in Self-Organizing Maps. pp. 325-333.PUB
-
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982119Arnonkijpanich, B., et al., 2008. Matrix Learning for Topographic Neural Maps. In V. Kůrková, R. Neruda, & J. Koutník, eds. Artificial Neural Networks - ICANN 2008. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 572-582.PUB | DOI
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993939Schleif, F.-M., Villmann, T., & Hammer, B., 2008. Pattern Recognition by Supervised Relevance Neural Gas and its Application to Spectral Data in Bioinformatics. In J. R. -n R. -al Dopico, J. Dorado, & A. Pazos, eds. Encyclopedia of Artificial Intelligence. IGI Global, pp. 1337-1342.PUB
-
2008 | Konferenzband | Veröffentlicht | PUB-ID: 1994329L. de Raedt, et al., eds., 2008. Recurrent Neural Networks - Models, Capacities, and Applications, no.8041, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI).PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993282Arnonkijpanich, B., et al., 2008. Matrix Learning for Topographic Neural Maps. In V. Kurková, R. Neruda, & J. Koutn'ık, eds. ICANN (1). Lecture Notes in Computer Science, 5163. Berlin: Springer, pp. 572-582.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993261Alex, N., & Hammer, B., 2008. Parallelizing single pass patch clustering. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. Evere, Belgium: d-side publications, pp. 227-232.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1993278Arnonkijpanich, B., Hammer, B., & Hasenfuss, A., 2008. Local Matrix Adaptation in Topographic Neural Maps, IfI-08-07, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1993379Bunte, K., et al., 2008. Discriminative Visualization by Limited Rank Matrix Learning, Machine Learning Reports, Leipzig: Universität Leipzig.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1994012Schneider, P., Biehl, M., & Hammer, B., 2008. Matrix Adaptation in Discriminative Vector Quantization, IfI Technical Report Seriess, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993776Hasenfuss, A., Boerger, W., & Hammer, B., 2008. Topographic processing of very large text datasets. In C. H. Daglie, ed. Smart Systems Engineering: Computational Intelligence in Architecting Systes (ANNIE 2008). ASME Press, pp. 525-532.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993788Hasenfuss, A., & Hammer, B., 2008. Single Pass Clustering and Classification of Large Dissimilarity Datasets. In B. Prasad, et al., eds. Artificial Intelligence and Pattern Recognition. ISRST, pp. 219-223.PUB
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994072Strickert, M., et al., 2008. Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics. In L. Prevost, S. Marinai, & F. Schwenker, eds. Artificial Neural Networks in Pattern Recognition. Third IAPR Workshop. Proceedings. Lecture Notes in Computer Science, 5064. Berlin: Springer, pp. 78-89.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994089Strickert, M., et al., 2008. Robust Centroid-Based Clustering using Derivatives of Pearson Correlation. In P. Encarnação & A. Veloso, eds. BIOSIGNALS (2). INSTICC - Institute for Systems and Technologies of Information, Control and Communication, pp. 197-203.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994281Winkler, T., et al., 2008. Thinning Mesh Animations. In O. Deussen, D. Keim, & D. Saupe, eds. Proceedings of Vision, Modeling, and Visualization 2008. Konstanz, Germany: Aka, pp. 149-158.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993804Hasenfuss, A., Hammer, B., & Rossi, F., 2008. Patch Relational Neural Gas - Clustering of Huge Dissimilarity Datasets. In L. Prevost, S. Marinai, & F. Schwenker, eds. Artificial Neural Networks in Pattern Recognition, Third IAPR Workshop. Proceedings. Lecture Notes in Computer Science, 5064. Berlin: Springer, pp. 1-12.PUB | DOI
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993900Schleif, F.-M., Hammer, B., & Villmann, T., 2008. Analysis of Spectral Data in Clinical Proteomics by use of Learning Vector Quantizers. In M. Van de Werff, A. Delder, & R. Tollenaar, eds. Computational Intelligence in Biomedicine and Bioinformatics: Current Trends and Applications. Berlin: Springer, pp. 141-167.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993798Hasenfuss, A., et al., 2008. Magnification Control in Relational Neural Gas. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. Brussels: d-side publications, pp. 325-330.PUB
-
2008 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994253Villmann, T., et al., 2008. Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics, 9(2), p 129-143.PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993848Rossi, F., Hasenfuß, A., & Hammer, B., 2007. Accelerating Relational Clustering Algorithms With Sparse Prototype Representation. In Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.PUB | PDF | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994016Schneider, P., et al., 2007. Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data. In Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.PUB | PDF | DOI
-
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994295Witoelar, A., Biehl, M., & Hammer, B., 2007. Learning Vector Quantization: generalization ability and dynamics of competing prototypes. In Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.PUB | PDF | DOI
-
-
-
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993782Hasenfuss, A., & Hammer, B., 2007. Relational topographic maps. In M. R. Berthold, J. Shawe-Taylor, & N. Lavrac, eds. Advances in Intelligent Data Analysis VII, Proceedings of the 7th International Symposium on Intelligent Data Analysis. no.4723 Berlin: Springer, pp. 93-105.PUB | DOI
-
2007 | Report | Veröffentlicht | PUB-ID: 1993922Schleif, F.-M., Hasenfuss, A., & Hammer, B., 2007. Aggregation of multiple peak lists by use of an improved neural gas network, Leipzig: Universität Leipzig.PUB
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993297Biehl, M., Ghosh, A., & Hammer, B., 2007. Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research, 8, p 323-360.PUB
-
2007 | Report | Veröffentlicht | PUB-ID: 1993533Hammer, B., & Hasenfuss, A., 2007. Relational topographic Maps, IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Report | Veröffentlicht | PUB-ID: 1993831Melato, M., Hammer, B., & Hormann, K., 2007. Neural Gas for Surface Reconstruction, IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993970Schleif, F.-M., Villmann, T., & Hammer, B., 2007. Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing-Maps. In F. Masulli, S. Mitra, & G. Pasi, eds. Application of Fuzzy Sets Theory. Proceedings of the 7th International Workshop on Fuzzy Logic and Applications. LNAI 4578. Berlin, Heidelberg: Springer, pp. 563-570.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993999Schneider, P., Biehl, M., & Hammer, B., 2007. Relevance matrices in LVQ. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks. Brussels, Belgium: d-side publications, pp. 37-42.PUB
-
-
2007 | Report | Veröffentlicht | PUB-ID: 1993334Blazewicz, J., Ecker, K., & Hammer, B., 2007. ICOLE-2007, German-Polish Workshop on Computational Biology, Scheduling and Machine Learning. Lessach, Austria, 27.05.-02.06.2007, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993746Hammer, B., & Villmann, T., 2007. How to process uncertainty in machine learning. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks (ESANN'2007). Brussels, Belgium: d-side publications, pp. 79-90.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993811Hasenfuss, A., et al., 2007. Neural gas clustering for dissimilarity data with continuous prototypes. In F. Sandoval, et al., eds. Computational and Ambient Intelligence – Proceedings of the 9th Work-conference on Artificial Neural Networks. LNCS 4507. Berlin: Springer, pp. 539-546.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994299Witolaer, A., et al., 2007. On the dynamics of vector quantization and neural gas. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks (ESANN'2007). Brussels, Belgium: d-side publications, pp. 127-132.PUB
-
2007 | Konferenzband | Veröffentlicht | PUB-ID: 1994321M. Biehl, et al., eds., 2007. Similarity-based Clustering and its Application to Medicine and Biology, no.7131, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI).PUB
-
-
-
-
2007 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993630Hammer, B., Micheli, A., & Sperduti, A., 2007. Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties. In B. Hammer & P. Hitzler, eds. Perspectives of Neural-Symbolic Integration. Studies in computational Intelligence, 77. Berlin: Springer, pp. 67-94.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993820Hasenfuss, A., et al., 2007. Neural gas clustering for sparse proximity data. In F. Sandoval, et al., eds. Proceedings of the 9th International Work-Conference on Artificial Neural Networks.LNCS 4507. Berlin, Heidelberg, Germany: Springer, pp. 539-546.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993907Schleif, F.-M., Hammer, B., & Villmann, T., 2007. Supervised Neural Gas for Functional Data and its Application to the Analysis of Clinical Proteom Spectra. In F. Sandoval, et al., eds. Computational and Ambient Intelligence. Proceedings of the 9th International Work-Conference on Artificial Neural Networks. LNCS, 4507. Berlin, Heidelberg: Springer, pp. 1036-1044.PUB | DOI
-
2007 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1994102Tino, P., Hammer, B., & Boden, M., 2007. Markovian Bias of Neural-based Architectures With Feedback Connections. In B. Hammer & P. Hitzler, eds. Perspectives of Neural-Symbolic Integration. Studies in computational Intelligence, 77. Berlin: Springer, pp. 95-134.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994258Villmann, T., et al., 2007. Fuzzy Labeled Self Organizing Map for Clasification of Spectra. In F. Sandoval, et al., eds. Computational and Ambient Intelligence. Proceedings of the 9th Work-conference on Artificial Neural Networks. LNCS, 4507. Berlin: Springer, pp. 556-563.PUB | DOI
-
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993895Schleif, F.-M., Hammer, B., & Villmann, T., 2006. Margin based Active Learning for LVQ Networks. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks. Brussels, Belgium: d-side publications, pp. 539-544.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994184Villmann, T., et al., 2006. Prototype based classification using information theoretic learning. In I. King, et al., eds. Neural Information Processing, 13th International Conference. Proceedings. Lecture Notes in Computer Science, 4233. no.Part II Berlin: Springer, pp. 40-49.PUB
-
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993889Schleif, F.-M., et al., 2006. Machine Learning and Soft-Computing in Bioinformatics. A Short Journey. In Proc. of FLINS 2006. World Scientific Press, pp. 541-548.PUB
-
2006 | Report | Veröffentlicht | PUB-ID: 1993322Biehl, M., Hammer, B., & Schneider, P., 2006. Matrix Learning in Learning Vector Quantization, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993391Cottrell, M., et al., 2006. Batch and Median Neural Gas. Neural Networks, 19(6-7), p 762-771.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993568Hammer, B., et al., 2006. Supervised median neural gas. In C. Dagli, et al., eds. Smart Engineering System Design. Intelligent Engineering Systems Through Artificial Neural Networks, 16. ASME Press, pp. 623-633.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993594Hammer, B., et al., 2006. Supervised median clustering. In C. H. Dagli, ed. Smart systems engineering : infra-structure systems engineering, bio-informatics and computational biology and evolutionary computation : proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2006). ASME Press series on intelligent engineering systems through artificial neural networks, 16. New York, NY: ASME Press, pp. 623-632.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993878Schleif, F.-M., et al., 2006. Analysis and Visualization of Proteomic Data by Fuzzy labeled Self-Organizing Maps. In D. J. Lee, et al., eds. 19th IEEE International Symposium on Computer- based Medical Systems. Los Alamitos: IEEE Computer Society Press, pp. 919-924.PUB | DOI
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994028Seiffert, U., et al., 2006. Neural Networks and Machine Learning in Bioinformatics - Theory and Applications. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks. Brussels, Belgium: d-side publications, pp. 521-532.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994201Villmann, T., Hammer, B., & Seiffert, U., 2006. Perspectives of Self-adapted Self-organizing Clustering in Organic Computing. In A. J. Ijspeert, T. Masuzawa, & S. Kusumoto, eds. Biologically Inspired Approaches to Advanced Information Technology, Second International Workshop. Proceedings. Lecture Notes in Computer Science, 3853. Berlin: Springer, pp. 141-159.PUB | DOI
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994237Villmann, T., Schleif, F.-M., & Hammer, B., 2006. Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks, 19(5), p 610-622.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993440Ghosh, A., Biehl, M., & Hammer, B., 2006. Performance analysis of LVQ algorithms: a statistical physics approach. Neural Networks, 19(6-7), p 817-829.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Report | Veröffentlicht | PUB-ID: 1993584Hammer, B., et al., 2006. Supervised median clustering, IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993611Hammer, B., Hasenfuss, A., & Villmann, T., 2006. Magnification Control for Batch Neural Gas. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks. Brussels: d-side publications, pp. 7-12.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993659Hammer, B., & Neubauer, N., 2006. On the capacity of unsupervised recursive neural networks for symbol processing. In A. d'Avila Garcez, P. Hitzler, & G. Tamburrini, eds. Workshop proceedings of NeSy'06.PUB
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993762Hammer, B., & Villmann, T., 2006. Effizient Klassifizieren und Clustern: Lernparadigmen von Vektorquantisierern. Künstliche Intelligenz, 3(6), p 5-11.PUB
-
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994195Villmann, T., et al., 2006. Fuzzy Classification by Fuzzy Labeled Neural Gas. Neural Networks, 19(6-7), p 772-779.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2017225Hammer, B., et al., 2006. Learning vector quantization classification with local relevance determination for medical data. In L. Rutkowski, et al., eds. Artificial Intelligence and Soft-Computing - Proceedings of ICAISC 2006. LNAI, 4029. Lecture notes in computer science ; 4029 : Lecture notes in artificial intelligence. no.4029 Berlin, Heidelberg: Springer, pp. 603-612.PUB | DOI
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993624Hammer, B., et al., 2005. Self Organizing Maps for Time Series. In Proceedings of WSOM 2005. pp. 115-122.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994172Villmann, T., et al., 2005. Fuzzy Labeled Neural GAS for Fuzzy Classification. In M. Cottrell, ed. Proceedings of the 5th Workshop on Self-Organizing Maps [on CD-ROM]. Paris, France: University Paris-1-Pantheon-Sorbonne, pp. 283-290.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993305Biehl, M., Gosh, A., & Hammer, B., 2005. The dynamics of Learning Vector Quantization. In M. Verleysen, ed. ESANN'05. Evere: d-side publishing, pp. 13-18.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993386Cottrell, M., et al., 2005. Batch NG. In Proceedings of WSOM 2005. pp. 275-282.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993444Ghosh, A., Biehl, M., & Hammer, B., 2005. Dynamical Analysis of LVQ type learning rules. In Proceedings of WSOM. pp. 578-594.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993665Hammer, B., et al., 2005. Relevance learning for mental disease classification. In M. Verleysen, ed. ESANN'05. d-side publishing, pp. 139-144.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994118Tluk von Toschanowitz, K., Hammer, B., & Ritter, H., 2005. Relevance determination in reinforcement learning. In M. Verleysen, ed. ESANN'05. d-side publishing, pp. 369-374.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994219Villmann, T., Schleif, F.-M., & Hammer, B., 2005. Fuzzy Classification for Classification of Mass Spectrometric Data Based on Learning Vector Quantization. In International Workshop on Integrative Bioinformatics.PUB
-
-
-
2005 | Report | Veröffentlicht | PUB-ID: 1993675Hammer, B., Schleif, F.-M., & Villmann, T., 2005. On the Generalization Ability of Prototype-Based Classifiers with Local Relevance Determination, IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
-
2005 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993671Hammer, B., Saunders, C., & Sperduti, A., 2005. Special issue on neural networks and kernel methods for structured domains. Neural Networks, 18(8), p 1015-1018.PUB | DOI | WoS | PubMed | Europe PMC
-
2005 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993710Hammer, B., Strickert, M., & Villmann, T., 2005. Prototype based recognition of splice sites. In U. Seiffert, L. C. Jain, & P. Schweitzer, eds. Bioinformatics using computational intelligence paradigms. Berlin: Springer, pp. 25-55.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993974Schleif, F.-M., Villmann, T., & Hammer, B., 2005. Local Metric Adaptation for Soft Nearest Prototype Classification to Classify Proteomic Data. In I. Bloch, A. Petrosino, & A. G. B. Tettamanzi, eds. Proceedings of the 6th Workshop on Fuzzy Logic and Applications. Berlin, Heidelberg: Springer, pp. 290-296.PUB | DOI
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994249Villmann, T., Schleif, F.-M., & Hammer, B., 2005. Fuzzy labeled soft nearest neighbor classification with relevance learning. In M. A. Wani, K. J. Cios, & K. Hafeez, eds. Proceedings of the International Conference of Machine Learning Applications. Los Angeles: IEEE Press, pp. 11-15.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993750Hammer, B., & Villmann, T., 2005. Classification using non standard metrics. In M. Verleysen, ed. ESANN'05. Brussels: d-side publishing, pp. 303-316.PUB
-
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982121Gersmann, K., & Hammer, B., 2004. A reinforcement learning algorithm to improve scheduling search heuristics with the SVM. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). no.3 IEEE, pp. 1811-1816.PUB | DOI
-
2004 | Report | Veröffentlicht | PUB-ID: 1993732Hammer, B., Tino, P., & Micheli, A., 2004. A mathematical characterization of the architectural bias of recursive models, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994168Villmann, T., Hammer, B., & Schleif, F.-M., 2004. Metrik Adaptation for Optimal Feature Classification in Learning Vector Quantization Applied to Environment Detection. In H. - M. Groß, K. Debes, & H. - J. Böhme, eds. Proceedings of Selbstorganisation Von Adaptivem Verfahren. Fortschritts-Berichte VDI Reihe 10, Nr. 742. VDI Verlag, pp. 592-597.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994111Tluk von Toschanowitz, K., Hammer, B., & Ritter, H., 2004. Mapping the Design Space of Reinforcement Learning Problems - a Case Study. In H. - M. Gross, K. Debes, & H. - J. Böhme, eds. SOAVE 2004, 3rd Workshop on SelfOrganization of AdaptiVE Behavior. VDI Verlag, pp. 251-261.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994212Villmann, T., Schleif, F.-M., & Hammer, B., 2004. Metric adaptation for optimal feature classification in learning vector quantization applied to environment detection. In H. - M. Groß, K. Debes, & H. - J. Böhme, eds. SOAVE 2004, 3rd Workshop on SelfOrganization of AdaptiVE Behavior. VDI Verlag.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993620Hammer, B., & Jain, B.J., 2004. Neural methods for non-standard data. In M. Verleysen, ed. European Symposium on Artificial Neural Networks'2004. D-side publications, pp. 281-292.PUB
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993649Hammer, B., et al., 2004. Recursive self-organizing network models. Neural Networks, 17(8-9), p 1061-1085.PUB | DOI | WoS | PubMed | Europe PMC
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993702Hammer, B., Strickert, M., & Villmann, T., 2004. Relevance LVQ versus SVM. In L. Rutkowski, et al., eds. Artificial Intelligence and Softcomputing, Lecture Notes in Artificial Intelligence, 3070. Berlin: Springer, pp. 592-597.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993419Gersmann, K., & Hammer, B., 2004. A reinforcement learning algorithm to improve scheduling search heuristics with the SVM. In IJCNN.PUB
-
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993870Schleif, F.-M., et al., 2004. Supervised Relevance Neural Gas and Unified Maximum Separability Analysis for Classification of Mass Spectrometric Data. In M. A. Wani, K. J. Cios, & K. Hafeez, eds. Proceedings of the 3rd International Conference on Machine Learning and Applications (ICMLA) 2004. Los Alamitos, CA, USA: IEEE Press, pp. 374-379.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994049Strickert, M., & Hammer, B., 2004. Self-organizing context learning. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D-side publications, pp. 39-44.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994099Tino, P., & Hammer, B., 2004. On early stages of learning in connectionist models with feedback connections. In Compositional Connectionism in Cognitive Science.PUB
-
-
-
-
-
2003 | Report | Veröffentlicht | PUB-ID: 1993725Hammer, B., Strickert, M., & Villmann, T., 2003. On the generalization ability of GRLVQ, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994108Tiño, P., & Hammer, B., 2003. Architectural Bias in Recurrent Neural Networks: Fractal Analysis. Neural Computation, 15(8), p 1931-1957.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994223Villmann, T., Schleif, F.-M., & Hammer, B., 2003. Supervised Neural Gas and Relevance Learning in Learning Vector Quantization. In T. Yamakawa, ed. Proceedings of the 4th Workshop on Self Organizing Maps [on CD-ROM]. Hibikino, Kitakyushu, Japan: Kyushu Institute of Technology, pp. 47-52.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993338Bojer, T., Hammer, B., & Koeers, C., 2003. Monitoring technical systems with prototype based clustering. In M. Verleysen, ed. ESANN 2003, 10th European Symposium on Artificial Neural Network. Proceedings. Evere: D-side publication, pp. 433-439.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993530Hammer, B., & Gersmann, K., 2003. A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters, 17(1), p 43-53.PUB
-
2003 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993487Hammer, B., 2003. Perspectives on learning symbolic data with connectionistic systems. In R. Kühn, et al., eds. Adaptivity and Learning. Berlin: Springer, pp. 141-160.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993754Hammer, B., & Villmann, T., 2003. Mathematical Aspects of Neural Networks. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks (ESANN'2003). Brussels, Belgium: d-side, pp. 59-72.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994053Strickert, M., & Hammer, B., 2003. Unsupervised recursive sequence processing. In M. Verleysen, ed. 10th European Symposium on Artificial Neural Networks. Proceedings. D-side publication, pp. 27-32.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994060Strickert, M., & Hammer, B., 2003. Neural Gas for Sequences. In WSOM'03. pp. 53-57.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993412Gersmann, K., & Hammer, B., 2003. Improving iterative repair strategies for scheduling with the SVM. In M. Verleysen, ed. ESANN 2003, 10th European Symposium on Artificial Neural Networks. Proceedings. Evere: D-side publication, pp. 235-240.PUB
-
2003 | Report | Veröffentlicht | PUB-ID: 1993645Hammer, B., Micheli, a., & Sperduti, A., 2003. A general framework for self-organizing structure processing neural networks, Pisa: Universita di Pisa, Dipartimento die Informatica.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993349Bojer, T., et al., 2003. Determining Relevant Input Dimensions for the Self-Organizing Map. In L. Rutkowski & J. Kacprzyk, eds. Neural Networks and Soft Computing (Proc. ICNNSC 2002). Physica-Verlag, pp. 388-393.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993736Hammer, B., & Tiño, P., 2003. Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Computation, 15(8), p 1897-1929.PUB
-
2003 | Report | Veröffentlicht | PUB-ID: 1994157Villmann, T., & Hammer, B., 2003. Metric adaptation and relevance learning in learning vector quantization, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994208Villmann, T., Merényi, E., & Hammer, B., 2003. Neural maps in remote sensing image analysis. Neural Networks, 16(3-4), p 389-403.PUB
-
-
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993636Hammer, B., Micheli, A., & Sperduti, A., 2002. A general framework for unsupervised processing of structured data. In M. Verleysen, ed. ESANN 2002, 10th European Symposium on Artificial Neural Network. Proceedings. De-side publication, pp. 389-394.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994095Tino, P., & Hammer, B., 2002. Architectural bias in recurrent neural networks – fractal analysis. In J. R. Dorronsoro, ed. Proc. International Conf. on Artificial Neural Networks. Lecture Notes in Computer Science, 2415. Berlin: Springer, pp. 370-376.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994146Villmann, T., & Hammer, B., 2002. Supervised Neural Gas for Learning Vector Quantization. In D. Polani, J. Kim, & T. Martinetz, eds. Proc. of the 5th German Workshop on Artificial Life. Berlin: Akademische Verlagsgesellschaft - infix - IOS Press, pp. 9-16.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993688Hammer, B., & Steil, J.J., 2002. Perspectives on Learning with Recurrent Neural Networks. In M. Verleysen, ed. Proc. European Symposium Artificial Neural Networks. D-side publication, pp. 357-368.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993758Hammer, B., & Villmann, T., 2002. Batch-GRLVQ. In M. Verleysen, ed. Proc. Of European Symposium on Artificial Neural Networks (ESANN'2002). Brussels, Belgium: d-side, pp. 295-300.PUB
-
2002 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993765Hammer, B., & Villmann, T., 2002. Generalized Relevance Learning Vector Quantization. Neural Networks, 15(8-9), p 1059-1068.PUB
-
2002 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993471Hammer, B., 2002. Compositionality in Neural Systems. In M. Arbib, ed. Handbook of Brain Theory and Neural Networks. 2nd. MIT Press, pp. 244-248.PUB
-
2002 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993508Hammer, B., 2002. Recurrent neural networks for structured data – a unifying approach and its properties. Cognitive Systems Research, 3(2), p 145-165.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993692Hammer, B., Strickert, M., & Villmann, T., 2002. Learning Vector Quantization for Multimodal Data. In J. R. Dorronsoro, ed. Proc. International Conf. on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 2415. Berlin: Springer Verlag, pp. 370-376.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993697Hammer, B., Strickert, M., & Villmann, T., 2002. Rule Extraction from Self-Organizing Networks. In J. R. Dorronsoro, ed. Proc. International Conf. on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 2415. Berlin: Springer Verlag, pp. 877-883.PUB
-
2002 | Report | Veröffentlicht | PUB-ID: 1993729Hammer, B., & Tino, P., 2002. Neural networks with small weights implement finite memory machines, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982130Hammer, B., 2001. On the Generalization Ability of Recurrent Networks. In G. Dorffner, H. Bischof, & K. Hornik, eds. Artificial Neural Networks — ICANN 2001. Lecture Notes in Computer Science. no. 2130 Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 731-736.PUB | DOI
-
2001 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982129Strickert, M., Bojer, T., & Hammer, B., 2001. Generalized Relevance LVQ for Time Series. In G. Dorffner, H. Bischof, & K. Hornik, eds. Artificial Neural Networks — ICANN 2001. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 677-683.PUB | DOI
-
-
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993768Hammer, B., & Villmann, T., 2001. Input Pruning for Neural Gas Architectures. In Proc. Of European Symposium on Artificial Neural Networks (ESANN'2001). Brussels, Belgium: D facto publications, pp. 283-288.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993343Bojer, T., et al., 2001. Relevance determination in learning vector quantization. In M. Verleysen, ed. ESANN'2001. D-facto publications, pp. 271-276.PUB
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994123Vidyasagar, M., Balaji, S., & Hammer, B., 2001. Closure properties of uniform convergence of empirical means and PAC learnability under a family of probability measures. System and Control Letters, 42, p 151-157.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993474Hammer, B., 2001. On the Generalization Ability of Recurrent Networks. In G. Dorffner, H. Bischof, & K. Hornik, eds. Artificial Neural Networks. Proceedings. Lecture Notes in Computer Science, 2130. Berlin: Springer, pp. 731-736.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993739Hammer, B., & Villmann, T., 2001. Estimating Relevant Input Dimensions for Self-Organizing Algorithms. In N. M. Allinson, et al., eds. Advances in Self-Organising Maps. London: Springer, pp. 173-180.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994042Strickert, M., Bojer, T., & Hammer, B., 2001. Generalized Relevance LVQ for Time Series. In G. Dorffner, H. Bischof, & K. Hornik, eds. Artificial Neural Networks. International Conference. Proceedings. Lecture Notes in Computer Science, 2130. Berlin: Springer, pp. 677-683.PUB
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993510Hammer, B., 2001. Generalization Ability of Folding Networks. IEEE Trans. Knowl. Data Eng., 13(2), p 196-206.PUB
-
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993499Hammer, B., 2000. Limitations of hybrid systems. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D-facto publications, pp. 213-218.PUB
-
2000 | Monographie | Veröffentlicht | PUB-ID: 1993514Hammer, B., 2000. Learning with Recurrent Neural Networks, Lecture Notes in Control and Information Sciences, 254, Berlin: Springer.PUB
-
2000 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993512Hammer, B., 2000. On the approximation capability of recurrent neural networks. Neurocomputing, 31(1-4), p 107-123.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993400DasGupta, B., & Hammer, B., 2000. On Approximate Learning by Multi-layered Feedforward Circuits. In H. Arimura, S. Jain, & A. Sharma, eds. Algorithmic Learning Theory, 11th International Conference. Proceedings. Lecture Notes in Computer Science, 1968. Berlin: Springer, pp. 264-278.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993479Hammer, B., 2000. Approximation and generalization issues of recurrent networks dealing with structured data. In P. Frasconi, A. Sperduti, & M. Gori, eds. ECAI workshop: Foundations of connectionist-symbolic integration: representation, paradigms, and algorithms.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993495Hammer, B., 2000. Neural networks classifying symbolic data. In L. de Raedt & S. Kramer, eds. ICML workshop on attribute-value and relational learning: crossing the boundaries. pp. 61-65.PUB
-
-
-
1999 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993516Hammer, B., 1999. On the learnability of recursive data. Mathematics of Control, Signals and Systems, 12, p 62-79.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993502Hammer, B., 1999. Approximation capabilities of folding networks. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D-facto publications, pp. 33-38.PUB
-
1999 | Report | Veröffentlicht | PUB-ID: 1993409DasGupta, B., & Hammer, B., 1999. Hardness of approximation of the loading problem for multi-layered feedforward neural networks, DIMACS Center, Rutgers University.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993484Hammer, B., 1998. On the Approximation Capability of Recurrent Neural Networks. In M. Heiss, ed. Proceedings of the International ICSC / IFAC Symposium on Neural Computation (NC 1998). ICSC Academic Press, pp. 512-518.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993505Hammer, B., 1998. Training a sigmoidal network is difficult. In M. Verleysen, ed. European Symposium on Artificial Neural Networks. D-facto publications, pp. 255-260.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993518Hammer, B., 1998. Some complexity results for perceptron networks. In International Conference on artificial Neural Networks. pp. 639-644.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993526Hammer, B., 1997. Generalization of Elman Networks. In Artificial Neural Networks - ICANN '97, 7th International Conference. Proceedings. Lecture Notes in Computer Science, 1327. Berlin: Springer, pp. 409-414.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993684Hammer, B., & Sperschneider, V., 1997. Neural networks can approximate mappings on structured objects. In P. P. Wang, ed. International conference on Computational Intelligence and Neural Networks. pp. 211-214.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993524Hammer, B., 1997. On the generalization ability of simple recurrent neural networks, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993520Hammer, B., 1997. Learning recursive data is intractable, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993522Hammer, B., 1997. A NP-hardness result for a sigmoidal 3-node neural network, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1996 | Report | Veröffentlicht | PUB-ID: 1993528Hammer, B., 1996. Universal approximation of mappings on structured objects using the folding architecture, Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1996 | Monographie | Veröffentlicht | PUB-ID: 1994039Sperschneider, V., & Hammer, B., 1996. Theoretische Informatik. Eine problemorientierte Einführung, erlin: Springer.PUB