Functional relevance learning in generalized learning vector quantization

Kaestner M, Hammer B, Biehl M, Villmann T (2012)
Neurocomputing 90: 85-95.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaestner, Marika; Hammer, BarbaraUniBi ; Biehl, Michael; Villmann, Thomas
Abstract / Bemerkung
Relevance learning in learning vector quantization is a central paradigm for classification task depending feature weighting and selection. We propose a functional approach to relevance learning for high-dimensional functional data. For this purpose we compose the relevance profile by a superposition of only a few parametrized basis functions taking into account the functional character of the data. The number of these parameters is usually significantly smaller than the number of relevance weights in standard relevance learning, which is the number of data dimensions. Thus, instabilities in learning are avoided and an inherent regularization takes place. In addition, we discuss strategies to obtain sparse relevance models for further model optimization. (C) 2012 Elsevier B.V. All rights reserved.
Stichworte
Sparse models; and selection; Feature weighting; Functional vector quantization; Relevance learning
Erscheinungsjahr
2012
Zeitschriftentitel
Neurocomputing
Band
90
Seite(n)
85-95
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2509858

Zitieren

Kaestner M, Hammer B, Biehl M, Villmann T. Functional relevance learning in generalized learning vector quantization. Neurocomputing. 2012;90:85-95.
Kaestner, M., Hammer, B., Biehl, M., & Villmann, T. (2012). Functional relevance learning in generalized learning vector quantization. Neurocomputing, 90, 85-95. doi:10.1016/j.neucom.2011.11.029
Kaestner, Marika, Hammer, Barbara, Biehl, Michael, and Villmann, Thomas. 2012. “Functional relevance learning in generalized learning vector quantization”. Neurocomputing 90: 85-95.
Kaestner, M., Hammer, B., Biehl, M., and Villmann, T. (2012). Functional relevance learning in generalized learning vector quantization. Neurocomputing 90, 85-95.
Kaestner, M., et al., 2012. Functional relevance learning in generalized learning vector quantization. Neurocomputing, 90, p 85-95.
M. Kaestner, et al., “Functional relevance learning in generalized learning vector quantization”, Neurocomputing, vol. 90, 2012, pp. 85-95.
Kaestner, M., Hammer, B., Biehl, M., Villmann, T.: Functional relevance learning in generalized learning vector quantization. Neurocomputing. 90, 85-95 (2012).
Kaestner, Marika, Hammer, Barbara, Biehl, Michael, and Villmann, Thomas. “Functional relevance learning in generalized learning vector quantization”. Neurocomputing 90 (2012): 85-95.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar