Suitability of Different Metric Choices for Concept Drift Detection
Hinder F, Vaquet V, Hammer B (2022)
In: Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Bouadi T, Fromont E, Hüllermeier E (Eds); Lecture Notes in Computer Science. Cham: Springer International Publishing: 157-170.
Sammelwerksbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Bouadi, Tassadit;
Fromont, Elisa;
Hüllermeier, Eyke
Einrichtung
Abstract / Bemerkung
The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time; as a consequence machine learning models may become inaccurate and need adjustment. Many unsupervised approaches for drift detection rely on measuring the discrepancy between the sample distributions of two time windows. This may be done directly, after some preprocessing (feature extraction, embedding into a latent space, etc.), or with respect to inferred features (mean, variance, conditional probabilities etc.). Most drift detection methods can be distinguished in what metric they use, how this metric is estimated, and how the decision threshold is found. In this paper, we analyze structural properties of the drift induced signals in the context of different metrics. We compare different types of estimators and metrics theoretically and empirically and investigate the relevance of the single metric components. In addition, we propose new choices and demonstrate their suitability in several experiments.
Erscheinungsjahr
2022
Buchtitel
Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings
Serientitel
Lecture Notes in Computer Science
Seite(n)
157-170
ISBN
978-3-031-01332-4
eISBN
978-3-031-01333-1
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2984050
Zitieren
Hinder F, Vaquet V, Hammer B. Suitability of Different Metric Choices for Concept Drift Detection. In: Bouadi T, Fromont E, Hüllermeier E, eds. Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2022: 157-170.
Hinder, F., Vaquet, V., & Hammer, B. (2022). Suitability of Different Metric Choices for Concept Drift Detection. In T. Bouadi, E. Fromont, & E. Hüllermeier (Eds.), Lecture Notes in Computer Science. Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings (pp. 157-170). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-01333-1_13
Hinder, Fabian, Vaquet, Valerie, and Hammer, Barbara. 2022. “Suitability of Different Metric Choices for Concept Drift Detection”. In Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings, ed. Tassadit Bouadi, Elisa Fromont, and Eyke Hüllermeier, 157-170. Lecture Notes in Computer Science. Cham: Springer International Publishing.
Hinder, F., Vaquet, V., and Hammer, B. (2022). “Suitability of Different Metric Choices for Concept Drift Detection” in Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings, Bouadi, T., Fromont, E., and Hüllermeier, E. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 157-170.
Hinder, F., Vaquet, V., & Hammer, B., 2022. Suitability of Different Metric Choices for Concept Drift Detection. In T. Bouadi, E. Fromont, & E. Hüllermeier, eds. Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 157-170.
F. Hinder, V. Vaquet, and B. Hammer, “Suitability of Different Metric Choices for Concept Drift Detection”, Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings, T. Bouadi, E. Fromont, and E. Hüllermeier, eds., Lecture Notes in Computer Science, Cham: Springer International Publishing, 2022, pp.157-170.
Hinder, F., Vaquet, V., Hammer, B.: Suitability of Different Metric Choices for Concept Drift Detection. In: Bouadi, T., Fromont, E., and Hüllermeier, E. (eds.) Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Lecture Notes in Computer Science. p. 157-170. Springer International Publishing, Cham (2022).
Hinder, Fabian, Vaquet, Valerie, and Hammer, Barbara. “Suitability of Different Metric Choices for Concept Drift Detection”. Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Ed. Tassadit Bouadi, Elisa Fromont, and Eyke Hüllermeier. Cham: Springer International Publishing, 2022. Lecture Notes in Computer Science. 157-170.