Learning Vector Quantization: generalization ability and dynamics of competing prototypes
Witoelar A, Biehl M, Hammer B (2007)
In: Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
288-Artikeltext-378-1-10-20190603.pdf
379.45 KB
Autor*in
Witoelar, Aree;
Biehl, Michael;
Hammer, BarbaraUniBi
Einrichtung
Abstract / Bemerkung
Learning Vector Quantization (LVQ) are popular multi-class classification algorithms. Prototypes in an LVQ system represent the typical features of classes in the data. Frequently multiple prototypes are employed for a class to improve the representation of variations within the class and the generalization ability. In this paper, we investigate the dynamics of LVQ in an exact mathematical way, aiming at understanding the influence of the number of prototypes and their assignment to classes. The theory of on-line learning allows a mathematical description of the learning dynamics in model situations. We demonstrate using a system of three prototypes the different behaviors of LVQ systems of multiple prototype and single prototype class representation.
Erscheinungsjahr
2007
Titel des Konferenzbandes
Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Konferenz
WSOM 2007
Konferenzort
Bielefeld, Germany
Konferenzdatum
2007-09-03 – 2007-09-06
ISBN
978-3-00-022473-7
Page URI
https://pub.uni-bielefeld.de/record/1994295
Zitieren
Witoelar A, Biehl M, Hammer B. Learning Vector Quantization: generalization ability and dynamics of competing prototypes. In: Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University; 2007.
Witoelar, A., Biehl, M., & Hammer, B. (2007). Learning Vector Quantization: generalization ability and dynamics of competing prototypes. Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) Bielefeld: Bielefeld University. https://doi.org/10.2390/biecoll-wsom2007-126
Witoelar, Aree, Biehl, Michael, and Hammer, Barbara. 2007. “Learning Vector Quantization: generalization ability and dynamics of competing prototypes”. In Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.
Witoelar, A., Biehl, M., and Hammer, B. (2007). “Learning Vector Quantization: generalization ability and dynamics of competing prototypes” in Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) (Bielefeld: Bielefeld University).
Witoelar, A., Biehl, M., & Hammer, B., 2007. Learning Vector Quantization: generalization ability and dynamics of competing prototypes. In Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.
A. Witoelar, M. Biehl, and B. Hammer, “Learning Vector Quantization: generalization ability and dynamics of competing prototypes”, Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007), Bielefeld: Bielefeld University, 2007.
Witoelar, A., Biehl, M., Hammer, B.: Learning Vector Quantization: generalization ability and dynamics of competing prototypes. Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld University, Bielefeld (2007).
Witoelar, Aree, Biehl, Michael, and Hammer, Barbara. “Learning Vector Quantization: generalization ability and dynamics of competing prototypes”. Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University, 2007.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
288-Artikeltext-378-1-10-20190603.pdf
379.45 KB
Access Level
Open Access
Zuletzt Hochgeladen
2021-07-26T13:23:28Z
MD5 Prüfsumme
c2f0fe8f7f979c0571c414e36fd5ce5f