Efficient Kernelization of Discriminative Dimensionality Reduction

Schulz A, Brinkrolf J, Hammer B (2017)
Neurocomputing 268(SI): 34-41.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 570.04 KB
Abstract / Bemerkung
Modern nonlinear dimensionality reduction (DR) techniques project high dimensional data to low dimensions for their visual inspection. Provided the intrinsic data dimensionality is larger than two, DR nec- essarily faces information loss and the problem becomes ill-posed. Dis- criminative dimensionality reduction (DiDi) offers one intuitive way to reduce this ambiguity: it allows a practitioner to identify what is relevant and what should be regarded as noise by means of intuitive auxiliary information such as class labels. One powerful DiDi method relies on a change of the data metric based on the Fisher information. This technique has been presented for vectorial data so far. The aim of this contribution is to extend the technique to more general data structures which are characterised in terms of pairwise similarities only by means of a kernelisation. We demonstrate that a computation of the Fisher metric is possible in kernel space, and that it can efficiently be integrated into modern DR technologies such as t-SNE or faster Barnes-Hut-SNE. We demonstrate the performance of the approach in a variety of benchmarks.
Erscheinungsjahr
2017
Zeitschriftentitel
Neurocomputing
Band
268
Ausgabe
SI
Seite(n)
34-41
ISSN
0925-2312
eISSN
1872-8286
Page URI
https://pub.uni-bielefeld.de/record/2909372

Zitieren

Schulz A, Brinkrolf J, Hammer B. Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing. 2017;268(SI):34-41.
Schulz, A., Brinkrolf, J., & Hammer, B. (2017). Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing, 268(SI), 34-41. doi:10.1016/j.neucom.2017.01.104
Schulz, Alexander, Brinkrolf, Johannes, and Hammer, Barbara. 2017. “Efficient Kernelization of Discriminative Dimensionality Reduction”. Neurocomputing 268 (SI): 34-41.
Schulz, A., Brinkrolf, J., and Hammer, B. (2017). Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing 268, 34-41.
Schulz, A., Brinkrolf, J., & Hammer, B., 2017. Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing, 268(SI), p 34-41.
A. Schulz, J. Brinkrolf, and B. Hammer, “Efficient Kernelization of Discriminative Dimensionality Reduction”, Neurocomputing, vol. 268, 2017, pp. 34-41.
Schulz, A., Brinkrolf, J., Hammer, B.: Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing. 268, 34-41 (2017).
Schulz, Alexander, Brinkrolf, Johannes, and Hammer, Barbara. “Efficient Kernelization of Discriminative Dimensionality Reduction”. Neurocomputing 268.SI (2017): 34-41.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:44Z
MD5 Prüfsumme
44484d1efd5c027879997b1385ca3f86


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar