Efficient Kernelization of Discriminative Dimensionality Reduction
Schulz A, Brinkrolf J, Hammer B (2017)
Neurocomputing 268(SI): 34-41.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Schulz.et.al._kernelisationDiDi.pdf
570.04 KB
Einrichtung
Abstract / Bemerkung
Modern nonlinear dimensionality reduction (DR) techniques project
high dimensional data to low dimensions for their visual inspection.
Provided the intrinsic data dimensionality is larger than two, DR nec-
essarily faces information loss and the problem becomes ill-posed. Dis-
criminative dimensionality reduction (DiDi) offers one intuitive way
to reduce this ambiguity: it allows a practitioner to identify what is
relevant and what should be regarded as noise by means of intuitive
auxiliary information such as class labels. One powerful DiDi method
relies on a change of the data metric based on the Fisher information.
This technique has been presented for vectorial data so far. The aim
of this contribution is to extend the technique to more general data
structures which are characterised in terms of pairwise similarities only
by means of a kernelisation. We demonstrate that a computation of
the Fisher metric is possible in kernel space, and that it can efficiently
be integrated into modern DR technologies such as t-SNE or faster
Barnes-Hut-SNE. We demonstrate the performance of the approach
in a variety of benchmarks.
Erscheinungsjahr
2017
Zeitschriftentitel
Neurocomputing
Band
268
Ausgabe
SI
Seite(n)
34-41
ISSN
0925-2312
eISSN
1872-8286
Page URI
https://pub.uni-bielefeld.de/record/2909372
Zitieren
Schulz A, Brinkrolf J, Hammer B. Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing. 2017;268(SI):34-41.
Schulz, A., Brinkrolf, J., & Hammer, B. (2017). Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing, 268(SI), 34-41. doi:10.1016/j.neucom.2017.01.104
Schulz, Alexander, Brinkrolf, Johannes, and Hammer, Barbara. 2017. “Efficient Kernelization of Discriminative Dimensionality Reduction”. Neurocomputing 268 (SI): 34-41.
Schulz, A., Brinkrolf, J., and Hammer, B. (2017). Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing 268, 34-41.
Schulz, A., Brinkrolf, J., & Hammer, B., 2017. Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing, 268(SI), p 34-41.
A. Schulz, J. Brinkrolf, and B. Hammer, “Efficient Kernelization of Discriminative Dimensionality Reduction”, Neurocomputing, vol. 268, 2017, pp. 34-41.
Schulz, A., Brinkrolf, J., Hammer, B.: Efficient Kernelization of Discriminative Dimensionality Reduction. Neurocomputing. 268, 34-41 (2017).
Schulz, Alexander, Brinkrolf, Johannes, and Hammer, Barbara. “Efficient Kernelization of Discriminative Dimensionality Reduction”. Neurocomputing 268.SI (2017): 34-41.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Schulz.et.al._kernelisationDiDi.pdf
570.04 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:44Z
MD5 Prüfsumme
44484d1efd5c027879997b1385ca3f86
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in