Convex Density Constraints for Computing Plausible Counterfactual Explanations

Artelt A, Hammer B (2020)
In: Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Farkas I, Masulli P, Wermter S (Eds); Lecture Notes in Computer Science, 12396. Cham: Springer: 353-365.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Farkas, Igor; Masulli, Paolo; Wermter, Stefan
Erscheinungsjahr
2020
Titel des Konferenzbandes
Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}
Band
12396
Seite(n)
353-365
ISBN
978-3-030-61608-3
eISBN
978-3-030-61609-0
Page URI
https://pub.uni-bielefeld.de/record/2946761

Zitieren

Artelt A, Hammer B. Convex Density Constraints for Computing Plausible Counterfactual Explanations. In: Farkas I, Masulli P, Wermter S, eds. Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Lecture Notes in Computer Science. Vol 12396. Cham: Springer; 2020: 353-365.
Artelt, A., & Hammer, B. (2020). Convex Density Constraints for Computing Plausible Counterfactual Explanations. In I. Farkas, P. Masulli, & S. Wermter (Eds.), Lecture Notes in Computer Science: Vol. 12396. Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I} (pp. 353-365). Cham: Springer. doi:10.1007/978-3-030-61609-0_28
Artelt, A., and Hammer, B. (2020). “Convex Density Constraints for Computing Plausible Counterfactual Explanations” in Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}, Farkas, I., Masulli, P., and Wermter, S. eds. Lecture Notes in Computer Science, vol. 12396, (Cham: Springer), 353-365.
Artelt, A., & Hammer, B., 2020. Convex Density Constraints for Computing Plausible Counterfactual Explanations. In I. Farkas, P. Masulli, & S. Wermter, eds. Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Lecture Notes in Computer Science. no.12396 Cham: Springer, pp. 353-365.
A. Artelt and B. Hammer, “Convex Density Constraints for Computing Plausible Counterfactual Explanations”, Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}, I. Farkas, P. Masulli, and S. Wermter, eds., Lecture Notes in Computer Science, vol. 12396, Cham: Springer, 2020, pp.353-365.
Artelt, A., Hammer, B.: Convex Density Constraints for Computing Plausible Counterfactual Explanations. In: Farkas, I., Masulli, P., and Wermter, S. (eds.) Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Lecture Notes in Computer Science. 12396, p. 353-365. Springer, Cham (2020).
Artelt, André, and Hammer, Barbara. “Convex Density Constraints for Computing Plausible Counterfactual Explanations”. Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}. Ed. Igor Farkas, Paolo Masulli, and Stefan Wermter. Cham: Springer, 2020.Vol. 12396. Lecture Notes in Computer Science. 353-365.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche