Sparse Prototype Representation by Core Sets

Schleif F-M, Zhu X, Hammer B (2013)
In: Intelligent Data Engineering and Automated Learning – IDEAL 2013. Yin H, Tang K, Gao Y, Klawonn F, Lee M, Weise T, Li B, Yao X (Eds); Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg: 302-309.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Yin, Hujun; Tang, Ke; Gao, Yang; Klawonn, Frank; Lee, Minho; Weise, Thomas; Li, Bin; Yao, Xin
Abstract / Bemerkung
Due to the increasing amount of large data sets, efficient learning algorithms are necessary. Also the interpretation of the final model is desirable to draw efficient conclusions from the model results. Prototype based learning algorithms have been extended recently to proximity learners to analyze data given in non-standard data formats. The supervised methods of this type are of special interest but suffer from a large number of optimization parameters to model the prototypes. In this contribution we derive an efficient core set based preprocessing to restrict the number of model parameters to O(nϵ2) with n as the number of prototypes. Accordingly, the number of model parameters gets independent of the size of the data sets but scales with the requested precision ε of the core sets. Experimental results show that our approach does not significantly degrade the performance while significantly reducing the memory complexity.
Erscheinungsjahr
2013
Buchtitel
Intelligent Data Engineering and Automated Learning – IDEAL 2013
Serientitel
Lecture Notes in Computer Science
Seite(n)
302-309
ISBN
978-3-642-41277-6
eISBN
978-3-642-41278-3
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2982105

Zitieren

Schleif F-M, Zhu X, Hammer B. Sparse Prototype Representation by Core Sets. In: Yin H, Tang K, Gao Y, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2013. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 302-309.
Schleif, F. - M., Zhu, X., & Hammer, B. (2013). Sparse Prototype Representation by Core Sets. In H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, et al. (Eds.), Lecture Notes in Computer Science. Intelligent Data Engineering and Automated Learning – IDEAL 2013 (pp. 302-309). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41278-3_37
Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. 2013. “Sparse Prototype Representation by Core Sets”. In Intelligent Data Engineering and Automated Learning – IDEAL 2013, ed. Hujun Yin, Ke Tang, Yang Gao, Frank Klawonn, Minho Lee, Thomas Weise, Bin Li, and Xin Yao, 302-309. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.
Schleif, F. - M., Zhu, X., and Hammer, B. (2013). “Sparse Prototype Representation by Core Sets” in Intelligent Data Engineering and Automated Learning – IDEAL 2013, Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., and Yao, X. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 302-309.
Schleif, F.-M., Zhu, X., & Hammer, B., 2013. Sparse Prototype Representation by Core Sets. In H. Yin, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2013. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 302-309.
F.-M. Schleif, X. Zhu, and B. Hammer, “Sparse Prototype Representation by Core Sets”, Intelligent Data Engineering and Automated Learning – IDEAL 2013, H. Yin, et al., eds., Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.302-309.
Schleif, F.-M., Zhu, X., Hammer, B.: Sparse Prototype Representation by Core Sets. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., and Yao, X. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2013. Lecture Notes in Computer Science. p. 302-309. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. “Sparse Prototype Representation by Core Sets”. Intelligent Data Engineering and Automated Learning – IDEAL 2013. Ed. Hujun Yin, Ke Tang, Yang Gao, Frank Klawonn, Minho Lee, Thomas Weise, Bin Li, and Xin Yao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Lecture Notes in Computer Science. 302-309.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche