Using Discriminative Dimensionality Reduction to Visualize Classifiers

Schulz A, Gisbrecht A, Hammer B (2015)
Neural Processing Letters 42(1): 27-54.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Albeit automated classifiers offer a standard tool in many application areas, there exists hardly a generic possibility to directly inspect their behavior, which goes beyond the mere classification of (sets of) data points. In this contribution, we propose a general framework how to visualize a given classifier and its behavior as concerns a given data set in two dimensions. More specifically, we use modern nonlinear dimensionality reduction (DR) techniques to project a given set of data points and their relation to the classification decision boundaries. Furthermore, since data are usually intrinsically more than two-dimensional and hence cannot be projected to two dimensions without information loss, we propose to use discriminative DR methods which shape the projection according to given class labeling as is the case for a classification setting. With a given data set, this framework can be used to visualize any trained classifier which provides a probability or certainty of the classification together with the predicted class label. We demonstrate the suitability of the framework in the context of different dimensionality reduction techniques, in the context of different attention foci as concerns the visualization, and as concerns different classifiers which should be visualized.
Stichworte
Visualization; metric; t-SNE; Fisher; Model interpretation; Non-linear dimensionality reduction
Erscheinungsjahr
2015
Zeitschriftentitel
Neural Processing Letters
Band
42
Ausgabe
1
Seite(n)
27-54
ISSN
1370-4621
Page URI
https://pub.uni-bielefeld.de/record/2766822

Zitieren

Schulz A, Gisbrecht A, Hammer B. Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters. 2015;42(1):27-54.
Schulz, A., Gisbrecht, A., & Hammer, B. (2015). Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters, 42(1), 27-54. doi:10.1007/s11063-014-9394-1
Schulz, Alexander, Gisbrecht, Andrej, and Hammer, Barbara. 2015. “Using Discriminative Dimensionality Reduction to Visualize Classifiers”. Neural Processing Letters 42 (1): 27-54.
Schulz, A., Gisbrecht, A., and Hammer, B. (2015). Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters 42, 27-54.
Schulz, A., Gisbrecht, A., & Hammer, B., 2015. Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters, 42(1), p 27-54.
A. Schulz, A. Gisbrecht, and B. Hammer, “Using Discriminative Dimensionality Reduction to Visualize Classifiers”, Neural Processing Letters, vol. 42, 2015, pp. 27-54.
Schulz, A., Gisbrecht, A., Hammer, B.: Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters. 42, 27-54 (2015).
Schulz, Alexander, Gisbrecht, Andrej, and Hammer, Barbara. “Using Discriminative Dimensionality Reduction to Visualize Classifiers”. Neural Processing Letters 42.1 (2015): 27-54.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported (CC BY-SA 3.0):
Volltext(e)
Titel
Using Discriminative Dimensionality Reduction to Visualize Classifiers
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:33Z
MD5 Prüfsumme
491718456bc43905b532fb6478af2767


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar