Efficient Metric Learning for the Analysis of Motion Data

Hosseini B, Hammer B (2015)
In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE.

Konferenzbeitrag | Veröffentlicht | Englisch
Abstract / Bemerkung
We investigate metric learning in the context of dynamic time warping (DTW), the by far most popular dissimilarity measure used for the comparison and analysis of motion capture data. While metric learning enables a problem-adapted representation of data, the majority of methods has been proposed for vectorial data only. In this contribution, we extend the popular principle offered by the large margin nearest neighbors learner (LMNN) to DTW by treating the resulting component-wise dissimilarity values as features. We demonstrate that this principle greatly enhances the classification accuracy in several benchmarks. Further, we show that recent auxiliary concepts such as metric regularization can be transferred from the vectorial case to component-wise DTW in a similar way. We illustrate that metric regularization constitutes a crucial prerequisite for the interpretation of the resulting relevance profiles.
Erscheinungsjahr
Titel des Konferenzbandes
2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
Konferenz
Data Science and Advanced Analytics (DSAA)
Konferenzort
Paris, France
Konferenzdatum
2015-10-19 – 2015-10-21
PUB-ID

Zitieren

Hosseini B, Hammer B. Efficient Metric Learning for the Analysis of Motion Data. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE; 2015.
Hosseini, B., & Hammer, B. (2015). Efficient Metric Learning for the Analysis of Motion Data. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) Piscataway, NJ: IEEE. doi:10.1109/DSAA.2015.7344819
Hosseini, B., and Hammer, B. (2015). “Efficient Metric Learning for the Analysis of Motion Data” in 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (Piscataway, NJ: IEEE).
Hosseini, B., & Hammer, B., 2015. Efficient Metric Learning for the Analysis of Motion Data. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE.
B. Hosseini and B. Hammer, “Efficient Metric Learning for the Analysis of Motion Data”, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Piscataway, NJ: IEEE, 2015.
Hosseini, B., Hammer, B.: Efficient Metric Learning for the Analysis of Motion Data. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, Piscataway, NJ (2015).
Hosseini, Babak, and Hammer, Barbara. “Efficient Metric Learning for the Analysis of Motion Data”. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE, 2015.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1610.05083

Suchen in

Google Scholar
ISBN Suche