Adaptive distance measures for sequential data

Mokbel B, Paaßen B, Hammer B (2014)
In: ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Bruges, Belgium: i6doc.com: 265-270.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Herausgeber*in
Verleysen, Michel
Abstract / Bemerkung
Recent extensions of learning vector quantization (LVQ) to general (dis-)similarity data have paved the way towards LVQ classifiers for possibly discrete, structured objects such as sequences addressed by classical alignment. In this contribution, we propose a metric learning scheme based on this framework which allows for autonomous learning of the underlying scoring matrix according to a given discriminative task. Besides facilitating the often crucial and problematic choice of the scoring matrix in applications, this extension offers an increased interpretability of the results by pointing out structural invariances for the given task.
Stichworte
learning vector quantization; sequence alignment; dissimilarity data; metric adaptation; metric learning
Erscheinungsjahr
2014
Titel des Konferenzbandes
ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Seite(n)
265-270
Konferenz
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN)
Konferenzort
Bruges, Belgium
Konferenzdatum
2014-04-23 – 2014-04-25
ISSN
9782874190957
Page URI
https://pub.uni-bielefeld.de/record/2673554

Zitieren

Mokbel B, Paaßen B, Hammer B. Adaptive distance measures for sequential data. In: Verleysen M, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com; 2014: 265-270.
Mokbel, B., Paaßen, B., & Hammer, B. (2014). Adaptive distance measures for sequential data. In M. Verleysen (Ed.), ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 265-270). Bruges, Belgium: i6doc.com.
Mokbel, Bassam, Paaßen, Benjamin, and Hammer, Barbara. 2014. “Adaptive distance measures for sequential data”. In ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ed. Michel Verleysen, 265-270. Bruges, Belgium: i6doc.com.
Mokbel, B., Paaßen, B., and Hammer, B. (2014). “Adaptive distance measures for sequential data” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 265-270.
Mokbel, B., Paaßen, B., & Hammer, B., 2014. Adaptive distance measures for sequential data. In M. Verleysen, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com, pp. 265-270.
B. Mokbel, B. Paaßen, and B. Hammer, “Adaptive distance measures for sequential data”, ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, M. Verleysen, ed., Bruges, Belgium: i6doc.com, 2014, pp.265-270.
Mokbel, B., Paaßen, B., Hammer, B.: Adaptive distance measures for sequential data. In: Verleysen, M. (ed.) ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. p. 265-270. i6doc.com, Bruges, Belgium (2014).
Mokbel, Bassam, Paaßen, Benjamin, and Hammer, Barbara. “Adaptive distance measures for sequential data”. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Ed. Michel Verleysen. Bruges, Belgium: i6doc.com, 2014. 265-270.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:22Z
MD5 Prüfsumme
616de35da7504439118ca972f698ba49


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar