Kernel Robust Soft Learning Vector Quantization

Hofmann D, Hammer B (2012)
In: Artificial Neural Networks in Pattern Recognition. Mana N, Schwenker F, Trentin E (Eds); Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg: 14-23.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Mana, Nadia; Schwenker, Friedhelm; Trentin, Edmondo
Abstract / Bemerkung
Prototype-based classification schemes offer very intuitive and flexible classifiers with the benefit of easy interpretability of the results and scalability of the model complexity. Recent prototype-based models such as robust soft learning vector quantization (RSLVQ) have the benefit of a solid mathematical foundation of the learning rule and decision boundaries in terms of probabilistic models and corresponding likelihood optimization. In its original form, they can be used for standard Euclidean vectors only. In this contribution, we extend RSLVQ towards a kernelized version which can be used for any positive semidefinite data matrix. We demonstrate the superior performance of the technique, kernel RSLVQ, in a variety of benchmarks where results competitive or even superior to state-of-the-art support vector machines are obtained.
Erscheinungsjahr
2012
Buchtitel
Artificial Neural Networks in Pattern Recognition
Serientitel
Lecture Notes in Computer Science
Seite(n)
14-23
ISBN
978-3-642-33211-1
eISBN
978-3-642-33212-8
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2982107

Zitieren

Hofmann D, Hammer B. Kernel Robust Soft Learning Vector Quantization. In: Mana N, Schwenker F, Trentin E, eds. Artificial Neural Networks in Pattern Recognition. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012: 14-23.
Hofmann, D., & Hammer, B. (2012). Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks in Pattern Recognition (pp. 14-23). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33212-8_2
Hofmann, Daniela, and Hammer, Barbara. 2012. “Kernel Robust Soft Learning Vector Quantization”. In Artificial Neural Networks in Pattern Recognition, ed. Nadia Mana, Friedhelm Schwenker, and Edmondo Trentin, 14-23. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.
Hofmann, D., and Hammer, B. (2012). “Kernel Robust Soft Learning Vector Quantization” in Artificial Neural Networks in Pattern Recognition, Mana, N., Schwenker, F., and Trentin, E. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 14-23.
Hofmann, D., & Hammer, B., 2012. Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin, eds. Artificial Neural Networks in Pattern Recognition. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 14-23.
D. Hofmann and B. Hammer, “Kernel Robust Soft Learning Vector Quantization”, Artificial Neural Networks in Pattern Recognition, N. Mana, F. Schwenker, and E. Trentin, eds., Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.14-23.
Hofmann, D., Hammer, B.: Kernel Robust Soft Learning Vector Quantization. In: Mana, N., Schwenker, F., and Trentin, E. (eds.) Artificial Neural Networks in Pattern Recognition. Lecture Notes in Computer Science. p. 14-23. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
Hofmann, Daniela, and Hammer, Barbara. “Kernel Robust Soft Learning Vector Quantization”. Artificial Neural Networks in Pattern Recognition. Ed. Nadia Mana, Friedhelm Schwenker, and Edmondo Trentin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. Lecture Notes in Computer Science. 14-23.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche