Unsupervised Dimensionality Reduction for Transfer Learning

Blöbaum P, Schulz A, Hammer B (2015)
In: Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Louvain-la-Neuve: Ciaco: 507-512.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Herausgeber*in
Verleysen, Michel
Abstract / Bemerkung
We investigate the suitability of unsupervised dimensionality reduction (DR) for transfer learning in the context of different representations of the source and target domain. Essentially, unsupervised DR establishes a link of source and target domain by representing the data in a common latent space. We consider two settings: a linear DR of source and target data which establishes correspondences of the data and an according transfer, and its combination with a non-linear DR which allows to adapt to more complex data characterised by a global non-linear structure.
Erscheinungsjahr
2015
Titel des Konferenzbandes
Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Seite(n)
507-512
Konferenz
23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015
Konferenzort
Bruges, Belgium
Konferenzdatum
2015-04-22 – 2015-04-24
ISBN
978-287587014-8
Page URI
https://pub.uni-bielefeld.de/record/2900325

Zitieren

Blöbaum P, Schulz A, Hammer B. Unsupervised Dimensionality Reduction for Transfer Learning. In: Verleysen M, ed. Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco; 2015: 507-512.
Blöbaum, P., Schulz, A., & Hammer, B. (2015). Unsupervised Dimensionality Reduction for Transfer Learning. In M. Verleysen (Ed.), Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 507-512). Louvain-la-Neuve: Ciaco.
Blöbaum, Patrick, Schulz, Alexander, and Hammer, Barbara. 2015. “Unsupervised Dimensionality Reduction for Transfer Learning”. In Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ed. Michel Verleysen, 507-512. Louvain-la-Neuve: Ciaco.
Blöbaum, P., Schulz, A., and Hammer, B. (2015). “Unsupervised Dimensionality Reduction for Transfer Learning” in Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Louvain-la-Neuve: Ciaco), 507-512.
Blöbaum, P., Schulz, A., & Hammer, B., 2015. Unsupervised Dimensionality Reduction for Transfer Learning. In M. Verleysen, ed. Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco, pp. 507-512.
P. Blöbaum, A. Schulz, and B. Hammer, “Unsupervised Dimensionality Reduction for Transfer Learning”, Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, M. Verleysen, ed., Louvain-la-Neuve: Ciaco, 2015, pp.507-512.
Blöbaum, P., Schulz, A., Hammer, B.: Unsupervised Dimensionality Reduction for Transfer Learning. In: Verleysen, M. (ed.) Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. p. 507-512. Ciaco, Louvain-la-Neuve (2015).
Blöbaum, Patrick, Schulz, Alexander, and Hammer, Barbara. “Unsupervised Dimensionality Reduction for Transfer Learning”. Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Ed. Michel Verleysen. Louvain-la-Neuve: Ciaco, 2015. 507-512.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:35Z
MD5 Prüfsumme
ae310a01e931d8dc8ec7c61e5c1be366


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche