KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions
Fumagalli F, Muschalik M, Kolpaczki P, Hüllermeier E, Hammer B (2024)
In: Proceedings of the 41st International Conference on Machine Learning. Salakhutdinov R, Kolter Z, Heller K, Weller A, Oliver N, Scarlett J, Berkenkamp F (Eds); Proceedings of Machine Learning Research, 235. PMLR: 14308-14342.
Konferenzbeitrag | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fumagalli, FabianUniBi
;
Muschalik, Maximilian;
Kolpaczki, Patrick;
Hüllermeier, Eyke;
Hammer, BarbaraUniBi 


Herausgeber*in
Salakhutdinov, Ruslan;
Kolter, Zico;
Heller, Katherine;
Weller, Adrian;
Oliver, Nuria;
Scarlett, Jonathan;
Berkenkamp, Felix
Einrichtung
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
Projekt
Abstract / Bemerkung
The Shapley value (SV) is a prevalent approach of allocating credit to machine learning (ML) entities to understand black box ML models. Enriching such interpretations with higher-order interactions is inevitable for complex systems, where the Shapley Interaction Index (SII) is a direct axiomatic extension of the SV. While it is well-known that the SV yields an optimal approximation of any game via a weighted least square (WLS) objective, an extension of this result to SII has been a long-standing open problem, which even led to the proposal of an alternative index. In this work, we characterize higher-order SII as a solution to a WLS problem, which constructs an optimal approximation via SII and k-Shapley values (k-SII). We prove this representation for the SV and pairwise SII and give empirically validated conjectures for higher orders. As a result, we propose KernelSHAP-IQ, a direct extension of KernelSHAP for SII, and demonstrate state-of-the-art performance for feature interactions.
Erscheinungsjahr
2024
Titel des Konferenzbandes
Proceedings of the 41st International Conference on Machine Learning
Serien- oder Zeitschriftentitel
Proceedings of Machine Learning Research
Band
235
Seite(n)
14308-14342
Page URI
https://pub.uni-bielefeld.de/record/3000176
Zitieren
Fumagalli F, Muschalik M, Kolpaczki P, Hüllermeier E, Hammer B. KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions. In: Salakhutdinov R, Kolter Z, Heller K, et al., eds. Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research. Vol 235. PMLR; 2024: 14308-14342.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., & Hammer, B. (2024). KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, & F. Berkenkamp (Eds.), Proceedings of Machine Learning Research: Vol. 235. Proceedings of the 41st International Conference on Machine Learning (pp. 14308-14342). PMLR.
Fumagalli, Fabian, Muschalik, Maximilian, Kolpaczki, Patrick, Hüllermeier, Eyke, and Hammer, Barbara. 2024. “KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions”. In Proceedings of the 41st International Conference on Machine Learning, ed. Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, 235:14308-14342. Proceedings of Machine Learning Research. PMLR.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., and Hammer, B. (2024). “KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions” in Proceedings of the 41st International Conference on Machine Learning, Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F. eds. Proceedings of Machine Learning Research, vol. 235, (PMLR), 14308-14342.
Fumagalli, F., et al., 2024. KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions. In R. Salakhutdinov, et al., eds. Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research. no.235 PMLR, pp. 14308-14342.
F. Fumagalli, et al., “KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions”, Proceedings of the 41st International Conference on Machine Learning, R. Salakhutdinov, et al., eds., Proceedings of Machine Learning Research, vol. 235, PMLR, 2024, pp.14308-14342.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., Hammer, B.: KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions. In: Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.) Proceedings of the 41st International Conference on Machine Learning. Proceedings of Machine Learning Research. 235, p. 14308-14342. PMLR (2024).
Fumagalli, Fabian, Muschalik, Maximilian, Kolpaczki, Patrick, Hüllermeier, Eyke, and Hammer, Barbara. “KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions”. Proceedings of the 41st International Conference on Machine Learning. Ed. Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp. PMLR, 2024.Vol. 235. Proceedings of Machine Learning Research. 14308-14342.