Lecture Notes on Applied Optimization

Paaßen B, Artelt A, Hammer B (2019) .

Monographie | Englisch
 
Download
OA 938.88 KB
Abstract / Bemerkung
These lecture notes cover theory and algorithms for optimization from an application perspective. With respect to theory we cover basic definitions of optimization problems and their solutions, necessary and sufficient conditions of optimality, convex problems and optimality under convexity, Lagrange- and Wolfe dual forms, as well as Karush-Kuhn-Tucker conditions of optimality. With respect to algorithms we cover analytical optimization; numeric optimization, especially (conjugate) gradient descent, (pseudo-)Newton, trust region, log-barrier, penalty, and projection methods; probabilistic optimization, especially expectation maximization and max-product; linear and quadratic programming; and heuristics, especially the Nelder-Mead algorithm, CMA-ES, Bayesian optimization, hill climbing, simulated annealing, tabu search, branch-and-cut, and ant colony optimization. As such, this document provides a comprehensive overview of the most important optimization techniques for a wide range of application domains as well as their theoretical foundations.
Erscheinungsjahr
2019
Page URI
https://pub.uni-bielefeld.de/record/2935200

Zitieren

Paaßen B, Artelt A, Hammer B. Lecture Notes on Applied Optimization.; 2019.
Paaßen, B., Artelt, A., & Hammer, B. (2019). Lecture Notes on Applied Optimization.
Paaßen, B., Artelt, A., and Hammer, B. (2019). Lecture Notes on Applied Optimization.
Paaßen, B., Artelt, A., & Hammer, B., 2019. Lecture Notes on Applied Optimization,
B. Paaßen, A. Artelt, and B. Hammer, Lecture Notes on Applied Optimization, 2019.
Paaßen, B., Artelt, A., Hammer, B.: Lecture Notes on Applied Optimization. (2019).
Paaßen, Benjamin, Artelt, André, and Hammer, Barbara. Lecture Notes on Applied Optimization. 2019.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported (CC BY-SA 3.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-04-21T20:53:02Z
MD5 Prüfsumme
9fa6458ce822faa20a911759ae9f9136

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar