Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis

Stallmann D, Hammer B (2023)
Algorithms 16(4): 205.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.51 MB
Abstract / Bemerkung
Novel neural network models that can handle complex tasks with fewer examples than before are being developed for a wide range of applications. In some fields, even the creation of a few labels is a laborious task and impractical, especially for data that require more than a few seconds to generate each label. In the biotechnological domain, cell cultivation experiments are usually done by varying the circumstances of the experiments, seldom in such a way that hand-labeled data of one experiment cannot be used in others. In this field, exact cell counts are required for analysis, and even by modern standards, semi-supervised models typically need hundreds of labels to achieve acceptable accuracy on this task, while classical image processing yields unsatisfactory results. We research whether an unsupervised learning scheme is able to accomplish this task without manual labeling of the given data. We present a VAE-based Siamese architecture that is expanded in a cyclic fashion to allow the use of labeled synthetic data. In particular, we focus on generating pseudo-natural images from synthetic images for which the target variable is known to mimic the existence of labeled natural data. We show that this learning scheme provides reliable estimates for multiple microscopy technologies and for unseen data sets without manual labeling. We provide the source code as well as the data we use. The code package is open source and free to use (MIT licensed).
Stichworte
Siamese networks; synthetic data; cyclic learning; unsupervised learning; deep learning; data augmentation; single cell cultivation; bioimage analysi
Erscheinungsjahr
2023
Zeitschriftentitel
Algorithms
Band
16
Ausgabe
4
Art.-Nr.
205
eISSN
1999-4893
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2978162

Zitieren

Stallmann D, Hammer B. Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis. Algorithms. 2023;16(4): 205.
Stallmann, D., & Hammer, B. (2023). Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis. Algorithms, 16(4), 205. https://doi.org/10.3390/a16040205
Stallmann, Dominik, and Hammer, Barbara. 2023. “Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis”. Algorithms 16 (4): 205.
Stallmann, D., and Hammer, B. (2023). Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis. Algorithms 16:205.
Stallmann, D., & Hammer, B., 2023. Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis. Algorithms, 16(4): 205.
D. Stallmann and B. Hammer, “Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis”, Algorithms, vol. 16, 2023, : 205.
Stallmann, D., Hammer, B.: Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis. Algorithms. 16, : 205 (2023).
Stallmann, Dominik, and Hammer, Barbara. “Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis”. Algorithms 16.4 (2023): 205.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-04-13T09:38:37Z
MD5 Prüfsumme
b3876d506b8c1b236077957c487a050e


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar