A General Framework for Dimensionality Reduction for Large Data Sets
Hammer B, Biehl M, Bunte K, Mokbel B (2011)
In: Advances in Self-Organizing Maps. Laaksonen J, Honkela T (Eds); Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg: 277-287.
Sammelwerksbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herausgeber*in
Laaksonen, Jorma;
Honkela, Timo
Abstract / Bemerkung
With electronic data increasing dramatically in almost all areas of research, a plethora of new techniques for automatic dimensionality reduction and data visualization has become available in recent years. These offer an interface which allows humans to rapidly scan through large volumes of data. With data sets becoming larger and larger, however, the standard methods can no longer be applied directly. Random subsampling or prior clustering still being one of the most popular solutions in this case, we discuss a principled alternative and formalize the approaches under a general perspectives of dimensionality reduction as cost optimization. We have a first look at the question whether these techniques can be accompanied by theoretical guarantees.
Erscheinungsjahr
2011
Buchtitel
Advances in Self-Organizing Maps
Serientitel
Lecture Notes in Computer Science
Seite(n)
277-287
ISBN
978-3-642-21565-0
eISBN
978-3-642-21566-7
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2982109
Zitieren
Hammer B, Biehl M, Bunte K, Mokbel B. A General Framework for Dimensionality Reduction for Large Data Sets. In: Laaksonen J, Honkela T, eds. Advances in Self-Organizing Maps. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011: 277-287.
Hammer, B., Biehl, M., Bunte, K., & Mokbel, B. (2011). A General Framework for Dimensionality Reduction for Large Data Sets. In J. Laaksonen & T. Honkela (Eds.), Lecture Notes in Computer Science. Advances in Self-Organizing Maps (pp. 277-287). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_28
Hammer, Barbara, Biehl, Michael, Bunte, Kerstin, and Mokbel, Bassam. 2011. “A General Framework for Dimensionality Reduction for Large Data Sets”. In Advances in Self-Organizing Maps, ed. Jorma Laaksonen and Timo Honkela, 277-287. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.
Hammer, B., Biehl, M., Bunte, K., and Mokbel, B. (2011). “A General Framework for Dimensionality Reduction for Large Data Sets” in Advances in Self-Organizing Maps, Laaksonen, J., and Honkela, T. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 277-287.
Hammer, B., et al., 2011. A General Framework for Dimensionality Reduction for Large Data Sets. In J. Laaksonen & T. Honkela, eds. Advances in Self-Organizing Maps. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 277-287.
B. Hammer, et al., “A General Framework for Dimensionality Reduction for Large Data Sets”, Advances in Self-Organizing Maps, J. Laaksonen and T. Honkela, eds., Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.277-287.
Hammer, B., Biehl, M., Bunte, K., Mokbel, B.: A General Framework for Dimensionality Reduction for Large Data Sets. In: Laaksonen, J. and Honkela, T. (eds.) Advances in Self-Organizing Maps. Lecture Notes in Computer Science. p. 277-287. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
Hammer, Barbara, Biehl, Michael, Bunte, Kerstin, and Mokbel, Bassam. “A General Framework for Dimensionality Reduction for Large Data Sets”. Advances in Self-Organizing Maps. Ed. Jorma Laaksonen and Timo Honkela. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. Lecture Notes in Computer Science. 277-287.