How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?

Mokbel B, Gross S, Lux M, Pinkwart N, Hammer B (2012)
In: Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Mana N, Schwenker F, Trentin E (Eds); Lecture Notes in Artificial Intelligence, 7477. Springer Berlin Heidelberg: 1-13.

Konferenzbeitrag | Veröffentlicht| Englisch
 
Download
OA
Autor/in
Mokbel, BassamUniBi; Gross, Sebastian; Lux, MarkusUniBi; Pinkwart, Niels; Hammer, BarbaraUniBi
Herausgeber*in
Mana, Nadia; Schwenker, Friedhelm; Trentin, Edmondo
Erscheinungsjahr
2012
Titel des Konferenzbandes
Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings
Band
7477
Seite(n)
1-13
Konferenz
5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012
Konferenzort
Trento, Italy
Konferenzdatum
2012-09-17 – 2012-09-19
ISBN
978-3-642-33211-1
eISBN
978-3-642-33212-8
Page URI
https://pub.uni-bielefeld.de/record/2536426

Zitieren

Mokbel B, Gross S, Lux M, Pinkwart N, Hammer B. How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? In: Mana N, Schwenker F, Trentin E, eds. Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Lecture Notes in Artificial Intelligence. Vol 7477. Springer Berlin Heidelberg; 2012: 1-13.
Mokbel, B., Gross, S., Lux, M., Pinkwart, N., & Hammer, B. (2012). How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? In N. Mana, F. Schwenker, & E. Trentin (Eds.), Lecture Notes in Artificial Intelligence: Vol. 7477. Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings (pp. 1-13). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33212-8_1
Mokbel, B., Gross, S., Lux, M., Pinkwart, N., and Hammer, B. (2012). “How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?” in Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings, Mana, N., Schwenker, F., and Trentin, E. eds. Lecture Notes in Artificial Intelligence, vol. 7477, (Springer Berlin Heidelberg), 1-13.
Mokbel, B., et al., 2012. How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? In N. Mana, F. Schwenker, & E. Trentin, eds. Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Lecture Notes in Artificial Intelligence. no.7477 Springer Berlin Heidelberg, pp. 1-13.
B. Mokbel, et al., “How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?”, Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings, N. Mana, F. Schwenker, and E. Trentin, eds., Lecture Notes in Artificial Intelligence, vol. 7477, Springer Berlin Heidelberg, 2012, pp.1-13.
Mokbel, B., Gross, S., Lux, M., Pinkwart, N., Hammer, B.: How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? In: Mana, N., Schwenker, F., and Trentin, E. (eds.) Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Lecture Notes in Artificial Intelligence. 7477, p. 1-13. Springer Berlin Heidelberg (2012).
Mokbel, Bassam, Gross, Sebastian, Lux, Markus, Pinkwart, Niels, and Hammer, Barbara. “How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?”. Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings. Ed. Nadia Mana, Friedhelm Schwenker, and Edmondo Trentin. Springer Berlin Heidelberg, 2012.Vol. 7477. Lecture Notes in Artificial Intelligence. 1-13.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:07Z
MD5 Prüfsumme
71895853ac75cd722137cf722545bc9f

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche