Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data

Bunte K, Hammer B, Wismueller A, Biehl M (2010)
Neurocomputing 73(7-9): 1074-1092.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bunte, Kerstin; Hammer, BarbaraUniBi ; Wismueller, Axel; Biehl, Michael
Abstract / Bemerkung
Due to the tremendous increase of electronic information with respect to the size of data sets as well as their dimension, dimension reduction and visualization of high-dimensional data has become one of the key problems of data mining. Since embedding in lower dimensions necessarily includes a loss of information, methods to explicitly control the information kept by a specific dimension reduction technique are highly desirable. The incorporation of supervised class information constitutes an important specific case. The aim is to preserve and potentially enhance the discrimination of classes in lower dimensions. In this contribution we use an extension of prototype-based local distance learning, which results in a nonlinear discriminative dissimilarity measure for a given labeled data manifold. The learned local distance measure can be used as basis for other unsupervised dimension reduction techniques, which take into account neighborhood information. We show the combination of different dimension reduction techniques with a discriminative similarity measure learned by an extension of learning vector quantization (LVQ) and their behavior with different parameter settings. The methods are introduced and discussed in terms of artificial and real world data sets. (C) 2010 Elsevier B.V. All rights reserved.
Stichworte
Visualization; Learning vector quantization; Dimension reduction
Erscheinungsjahr
2010
Zeitschriftentitel
Neurocomputing
Band
73
Ausgabe
7-9
Seite(n)
1074-1092
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/1796189

Zitieren

Bunte K, Hammer B, Wismueller A, Biehl M. Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing. 2010;73(7-9):1074-1092.
Bunte, K., Hammer, B., Wismueller, A., & Biehl, M. (2010). Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing, 73(7-9), 1074-1092. https://doi.org/10.1016/j.neucom.2009.11.017
Bunte, Kerstin, Hammer, Barbara, Wismueller, Axel, and Biehl, Michael. 2010. “Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data”. Neurocomputing 73 (7-9): 1074-1092.
Bunte, K., Hammer, B., Wismueller, A., and Biehl, M. (2010). Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 73, 1074-1092.
Bunte, K., et al., 2010. Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing, 73(7-9), p 1074-1092.
K. Bunte, et al., “Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data”, Neurocomputing, vol. 73, 2010, pp. 1074-1092.
Bunte, K., Hammer, B., Wismueller, A., Biehl, M.: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing. 73, 1074-1092 (2010).
Bunte, Kerstin, Hammer, Barbara, Wismueller, Axel, and Biehl, Michael. “Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data”. Neurocomputing 73.7-9 (2010): 1074-1092.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar