An EM transfer learning algorithm with applications in bionic hand prostheses

Paaßen B, Schulz A, Hahne J, Hammer B (2017)
In: Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Verleysen M (Ed); Bruges: i6doc.com: 129-134.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA 484.94 KB
Herausgeber*in
Verleysen, Michel
Abstract / Bemerkung
Modern bionic hand prostheses feature unprecedented functionality, permitting motion in multiple degrees of freedom (DoFs). However, conventional user interfaces allow for contolling only one DoF at a time. An intuitive, direct and simultaneous control of multiple DoFs requires machine learning models. Unfortunately, such models are not yet sufficiently robust to real-world disturbances, such as electrode shifts. We propose a novel expectation maximization approach for transfer learning to rapidly recalibrate a machine learning model if disturbances occur. In our experimental evaluation we show that even if few data points are available which do not cover all classes, our proposed approach finds a viable transfer mapping which improves classification accuracy significantly and outperforms all tested baselines.
Erscheinungsjahr
2017
Titel des Konferenzbandes
Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017)
Seite(n)
129-134
Konferenz
25th European Symposium on Artificial Neural Networks (ESANN 2017)
Konferenzort
Bruges
Konferenzdatum
2017-04-26 – 2017-04-28
ISBN
978-2-87587-038-4
Page URI
https://pub.uni-bielefeld.de/record/2909369

Zitieren

Paaßen B, Schulz A, Hahne J, Hammer B. An EM transfer learning algorithm with applications in bionic hand prostheses. In: Verleysen M, ed. Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Bruges: i6doc.com; 2017: 129-134.
Paaßen, B., Schulz, A., Hahne, J., & Hammer, B. (2017). An EM transfer learning algorithm with applications in bionic hand prostheses. In M. Verleysen (Ed.), Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017) (pp. 129-134). Bruges: i6doc.com.
Paaßen, B., Schulz, A., Hahne, J., and Hammer, B. (2017). “An EM transfer learning algorithm with applications in bionic hand prostheses” in Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017), Verleysen, M. ed. (Bruges: i6doc.com), 129-134.
Paaßen, B., et al., 2017. An EM transfer learning algorithm with applications in bionic hand prostheses. In M. Verleysen, ed. Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Bruges: i6doc.com, pp. 129-134.
B. Paaßen, et al., “An EM transfer learning algorithm with applications in bionic hand prostheses”, Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017), M. Verleysen, ed., Bruges: i6doc.com, 2017, pp.129-134.
Paaßen, B., Schulz, A., Hahne, J., Hammer, B.: An EM transfer learning algorithm with applications in bionic hand prostheses. In: Verleysen, M. (ed.) Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). p. 129-134. i6doc.com, Bruges (2017).
Paaßen, Benjamin, Schulz, Alexander, Hahne, Janne, and Hammer, Barbara. “An EM transfer learning algorithm with applications in bionic hand prostheses”. Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Ed. Michel Verleysen. Bruges: i6doc.com, 2017. 129-134.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:48:17Z
MD5 Prüfsumme
b71aec2cefc72c397aa5dda98c87bcaa

Material in PUB:
Spätere Version
Expectation maximization transfer learning and its application for bionic hand prostheses
Paaßen B, Schulz A, Hahne J, Hammer B (2018)
Neurocomputing 298: 122-133.
Zitiert
Linear Supervised Transfer Learning Toolbox
Paaßen B, Schulz A (2017)
Bielefeld University.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche