Approximation techniques for clustering dissimilarity data

Zhu X, Gisbrecht A, Schleif F-M, Hammer B (2012)
Neurocomputing 90: 72-84.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Recently, diverse high quality prototype-based clustering techniques have been developed which can directly deal with data sets given by general pairwise dissimilarities rather than standard Euclidean vectors. Examples include affinity propagation, relational neural gas, or relational generative topographic mapping. Corresponding to the size of the dissimilarity matrix, these techniques scale quadratically with the size of the training set, such that training becomes prohibitive for large data volumes. In this contribution, we investigate two different linear time approximation techniques, patch processing and the Nystrom approximation. We apply these approximations to several representative clustering techniques for dissimilarities, where possible, and compare the results for diverse data sets. (C) 2012 Elsevier B.V. All rights reserved.
Stichworte
Affinity propagation; Approximation; Clustering dissimilarity data; Patch processing; approximation; Nystrom; Neural gas; Generative topographic mapping
Erscheinungsjahr
2012
Zeitschriftentitel
Neurocomputing
Band
90
Seite(n)
72-84
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2509852

Zitieren

Zhu X, Gisbrecht A, Schleif F-M, Hammer B. Approximation techniques for clustering dissimilarity data. Neurocomputing. 2012;90:72-84.
Zhu, X., Gisbrecht, A., Schleif, F. - M., & Hammer, B. (2012). Approximation techniques for clustering dissimilarity data. Neurocomputing, 90, 72-84. doi:10.1016/j.neucom.2012.01.033
Zhu, X., Gisbrecht, A., Schleif, F. - M., and Hammer, B. (2012). Approximation techniques for clustering dissimilarity data. Neurocomputing 90, 72-84.
Zhu, X., et al., 2012. Approximation techniques for clustering dissimilarity data. Neurocomputing, 90, p 72-84.
X. Zhu, et al., “Approximation techniques for clustering dissimilarity data”, Neurocomputing, vol. 90, 2012, pp. 72-84.
Zhu, X., Gisbrecht, A., Schleif, F.-M., Hammer, B.: Approximation techniques for clustering dissimilarity data. Neurocomputing. 90, 72-84 (2012).
Zhu, Xibin, Gisbrecht, Andrej, Schleif, Frank-Michael, and Hammer, Barbara. “Approximation techniques for clustering dissimilarity data”. Neurocomputing 90 (2012): 72-84.