Distance learning in discriminative vector quantization

Schneider P, Biehl M, Hammer B (2009)
Neural Computation 21(10): 2942-2969.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schneider, P.; Biehl, M.; Hammer, BarbaraUniBi
Erscheinungsjahr
2009
Zeitschriftentitel
Neural Computation
Band
21
Ausgabe
10
Seite(n)
2942-2969
ISSN
0899-7667
eISSN
1530-888X
Page URI
https://pub.uni-bielefeld.de/record/1994008

Zitieren

Schneider P, Biehl M, Hammer B. Distance learning in discriminative vector quantization. Neural Computation. 2009;21(10):2942-2969.
Schneider, P., Biehl, M., & Hammer, B. (2009). Distance learning in discriminative vector quantization. Neural Computation, 21(10), 2942-2969. https://doi.org/10.1162/neco.2009.10-08-892
Schneider, P., Biehl, M., and Hammer, Barbara. 2009. “Distance learning in discriminative vector quantization”. Neural Computation 21 (10): 2942-2969.
Schneider, P., Biehl, M., and Hammer, B. (2009). Distance learning in discriminative vector quantization. Neural Computation 21, 2942-2969.
Schneider, P., Biehl, M., & Hammer, B., 2009. Distance learning in discriminative vector quantization. Neural Computation, 21(10), p 2942-2969.
P. Schneider, M. Biehl, and B. Hammer, “Distance learning in discriminative vector quantization”, Neural Computation, vol. 21, 2009, pp. 2942-2969.
Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantization. Neural Computation. 21, 2942-2969 (2009).
Schneider, P., Biehl, M., and Hammer, Barbara. “Distance learning in discriminative vector quantization”. Neural Computation 21.10 (2009): 2942-2969.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Application of an interpretable classification model on Early Folding Residues during protein folding.
Bittrich S, Kaden M, Leberecht C, Kaiser F, Villmann T, Labudde D., BioData Min 12(), 2019
PMID: 30627219
Maintaining Security and Privacy in Health Care System Using Learning Based Deep-Q-Networks.
Mohamed Shakeel P, Baskar S, Sarma Dhulipala VR, Mishra S, Jaber MM., J Med Syst 42(10), 2018
PMID: 30171378
Prototype-based models in machine learning.
Biehl M, Hammer B, Villmann T., Wiley Interdiscip Rev Cogn Sci 7(2), 2016
PMID: 26800334
Regularization in matrix relevance learning.
Schneider P, Bunte K, Stiekema H, Hammer B, Villmann T, Biehl M., IEEE Trans Neural Netw 21(5), 2010
PMID: 20236882

16 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Biehl, Journal of Machine Learning Research 8(), 2007

Bojer, 2001

Crammer, 2003

AUTHOR UNKNOWN, 0
Generalized relevance learning vector quantization.
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694

Kaski, 2001

AUTHOR UNKNOWN, 0

Newman, 1998

Sato, 1996

Schneider, 0
Soft learning vector quantization.
Seo S, Obermayer K., Neural Comput 15(7), 2003
PMID: 12816567

Seo, 2006

Strickert, 2007

Weinberger, 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19635012
PubMed | Europe PMC

Suchen in

Google Scholar