AutoML Technologies for the Identification of Sparse Models
Liuliakov A, Hammer B (2021)
In: Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Yin H, Camacho D, Tino P, Allmendinger R, Tallón-Ballesteros AJ, Tang K, Cho S-B, Novais P, Nascimento S (Eds); Lecture Notes in Computer Science, 13113. Cham: Springer : 65-75.
Sammelwerksbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herausgeber*in
Yin, Hujun;
Camacho, David;
Tino, Peter;
Allmendinger, Richard;
Tallón-Ballesteros, Antonio J.;
Tang, Ke;
Cho, Sung-Bae;
Novais, Paulo;
Nascimento, Susana
Einrichtung
Abstract / Bemerkung
Automated machine learning (AutoML) technologies constitute promising tools to automatically infer model architecture, meta-parameters or processing pipelines for specific machine learning tasks given suitable training data. At present, the main objective of such technologies typically relies on the accuracy of the resulting model. Additional objectives such as sparsity can be integrated by pre-processing steps or according penalty terms in the objective function. Yet, sparsity and model accuracy are often contradictory goals, and optimum solutions form a Pareto front. Thereby, it is not guaranteed that solutions at different positions of the Pareto front share the same architectural choices, hence current AutoML technologies might yield sub-optimal results. In this contribution, we propose a novel method, based on the AutoML method TPOT, which enables an automated optimization of ML pipelines with sparse input features along the whole Pareto front. We demonstrate that, indeed, different architectures are found at different points of the Pareto front for benchmark examples from the domain of systems security.
Erscheinungsjahr
2021
Buchtitel
Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings
Serientitel
Lecture Notes in Computer Science
Band
13113
Seite(n)
65-75
ISBN
978-3-030-91607-7
eISBN
978-3-030-91608-4
Page URI
https://pub.uni-bielefeld.de/record/2982165
Zitieren
Liuliakov A, Hammer B. AutoML Technologies for the Identification of Sparse Models. In: Yin H, Camacho D, Tino P, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Lecture Notes in Computer Science. Vol 13113. Cham: Springer ; 2021: 65-75.
Liuliakov, A., & Hammer, B. (2021). AutoML Technologies for the Identification of Sparse Models. In H. Yin, D. Camacho, P. Tino, R. Allmendinger, A. J. Tallón-Ballesteros, K. Tang, S. - B. Cho, et al. (Eds.), Lecture Notes in Computer Science: Vol. 13113. Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings (pp. 65-75). Cham: Springer . https://doi.org/10.1007/978-3-030-91608-4_7
Liuliakov, Aleksei, and Hammer, Barbara. 2021. “AutoML Technologies for the Identification of Sparse Models”. In Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings, ed. Hujun Yin, David Camacho, Peter Tino, Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho, Paulo Novais, and Susana Nascimento, 13113:65-75. Lecture Notes in Computer Science. Cham: Springer .
Liuliakov, A., and Hammer, B. (2021). “AutoML Technologies for the Identification of Sparse Models” in Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings, Yin, H., Camacho, D., Tino, P., Allmendinger, R., Tallón-Ballesteros, A. J., Tang, K., Cho, S. - B., Novais, P., and Nascimento, S. eds. Lecture Notes in Computer Science, vol. 13113, (Cham: Springer ), 65-75.
Liuliakov, A., & Hammer, B., 2021. AutoML Technologies for the Identification of Sparse Models. In H. Yin, et al., eds. Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Lecture Notes in Computer Science. no.13113 Cham: Springer , pp. 65-75.
A. Liuliakov and B. Hammer, “AutoML Technologies for the Identification of Sparse Models”, Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings, H. Yin, et al., eds., Lecture Notes in Computer Science, vol. 13113, Cham: Springer , 2021, pp.65-75.
Liuliakov, A., Hammer, B.: AutoML Technologies for the Identification of Sparse Models. In: Yin, H., Camacho, D., Tino, P., Allmendinger, R., Tallón-Ballesteros, A.J., Tang, K., Cho, S.-B., Novais, P., and Nascimento, S. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Lecture Notes in Computer Science. 13113, p. 65-75. Springer , Cham (2021).
Liuliakov, Aleksei, and Hammer, Barbara. “AutoML Technologies for the Identification of Sparse Models”. Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings. Ed. Hujun Yin, David Camacho, Peter Tino, Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho, Paulo Novais, and Susana Nascimento. Cham: Springer , 2021.Vol. 13113. Lecture Notes in Computer Science. 65-75.