Efficient Sensor Selection for Individualized Prediction Based on Biosignals

Vieth M, Grimmelsmann N, Schneider A, Hammer B (2022)
In: Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Yin H, Camacho D, Tino P (Eds); Lecture Notes in Computer Science, 13756. Cham: Springer International Publishing: 326-337.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Vieth, MarkusUniBi ; Grimmelsmann, Nils; Schneider, Axel; Hammer, BarbaraUniBi
Herausgeber*in
Yin, Hujun; Camacho, David; Tino, Peter
Abstract / Bemerkung
Soft sensors combine a hardware component with an intelligent algorithmic processing of the raw sensor signals. While individualization of software components according to a person’s specific needs is comparably cheap, individualization of the sensor hardware itself is usually impossible in mass production. At the same time, the number of raw sensors should be minimum to reduce production costs. In this contribution, we propose to model this challenge as a feature selection problem, which optimizes a feature set simultaneously with respect to a family of functions corresponding to individualized post-processing of sensor signals. This concept is integrated into a number of different classical feature selection schemes, and evaluated in the context of the placement of pressure sensors as part of a shoe insole. It turns out that feature selection respecting the class of functions is superior to both placement based on anatomical considerations and classical feature selection methods.
Erscheinungsjahr
2022
Buchtitel
Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings
Serientitel
Lecture Notes in Computer Science
Band
13756
Seite(n)
326-337
Konferenz
23rd International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2022)
Konferenzort
Manchester, UK
Konferenzdatum
2022-11-24 – 2022-11-26
ISBN
978-3-031-21752-4
eISBN
978-3-031-21753-1
Page URI
https://pub.uni-bielefeld.de/record/2967410

Zitieren

Vieth M, Grimmelsmann N, Schneider A, Hammer B. Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In: Yin H, Camacho D, Tino P, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. Vol 13756. Cham: Springer International Publishing; 2022: 326-337.
Vieth, M., Grimmelsmann, N., Schneider, A., & Hammer, B. (2022). Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In H. Yin, D. Camacho, & P. Tino (Eds.), Lecture Notes in Computer Science: Vol. 13756. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings (pp. 326-337). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-21753-1_32
Vieth, Markus, Grimmelsmann, Nils, Schneider, Axel, and Hammer, Barbara. 2022. “Efficient Sensor Selection for Individualized Prediction Based on Biosignals”. In Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, ed. Hujun Yin, David Camacho, and Peter Tino, 13756:326-337. Lecture Notes in Computer Science. Cham: Springer International Publishing.
Vieth, M., Grimmelsmann, N., Schneider, A., and Hammer, B. (2022). “Efficient Sensor Selection for Individualized Prediction Based on Biosignals” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Yin, H., Camacho, D., and Tino, P. eds. Lecture Notes in Computer Science, vol. 13756, (Cham: Springer International Publishing), 326-337.
Vieth, M., et al., 2022. Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In H. Yin, D. Camacho, & P. Tino, eds. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. no.13756 Cham: Springer International Publishing, pp. 326-337.
M. Vieth, et al., “Efficient Sensor Selection for Individualized Prediction Based on Biosignals”, Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, H. Yin, D. Camacho, and P. Tino, eds., Lecture Notes in Computer Science, vol. 13756, Cham: Springer International Publishing, 2022, pp.326-337.
Vieth, M., Grimmelsmann, N., Schneider, A., Hammer, B.: Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In: Yin, H., Camacho, D., and Tino, P. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Lecture Notes in Computer Science. 13756, p. 326-337. Springer International Publishing, Cham (2022).
Vieth, Markus, Grimmelsmann, Nils, Schneider, Axel, and Hammer, Barbara. “Efficient Sensor Selection for Individualized Prediction Based on Biosignals”. Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Ed. Hujun Yin, David Camacho, and Peter Tino. Cham: Springer International Publishing, 2022.Vol. 13756. Lecture Notes in Computer Science. 326-337.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche