Median variants of learning vector quantization for learning of dissimilarity data

Nebel D, Hammer B, Frohberg K, Villmann T (2015)
Neurocomputing 169(SI): 295-305.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ;
Abstract / Bemerkung
Exemplar based techniques such as affinity propagation represent data in terms of typical exemplars. This has two benefits: (i) the resulting models are directly interpretable by humans since representative exemplars can be inspected in the same way as data points, (ii) the model can be applied to any dissimilarity measure including non-Euclidean or non-metric settings. Most exemplar based techniques have been proposed in the unsupervised setting only, such that their performance in supervised learning tasks can be weak depending on the given data. We address the problem of learning exemplar-based models for general dissimilarity data in a discriminative framework in this contribution. For this purpose, we consider variants of Kohonen's learning vector quantization model to handle data with only dissimilarities between available. Here the exemplars are the prototypes. The resulting classifiers represent data in terms of sparse models thereby reaching state-of-the art results in benchmarks. For a real world data set in the field of veterinary medicine we report promising results. (C) 2015 Elsevier B.V. All rights reserved.
Stichworte
Dissimilarity data; Learning vector quantization; Median
Erscheinungsjahr
2015
Zeitschriftentitel
Neurocomputing
Band
169
Ausgabe
SI
Seite(n)
295-305
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2772407

Zitieren

Nebel D, Hammer B, Frohberg K, Villmann T. Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing. 2015;169(SI):295-305.
Nebel, D., Hammer, B., Frohberg, K., & Villmann, T. (2015). Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing, 169(SI), 295-305. doi:10.1016/j.neucom.2014.12.096
Nebel, D., Hammer, B., Frohberg, K., and Villmann, T. (2015). Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing 169, 295-305.
Nebel, D., et al., 2015. Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing, 169(SI), p 295-305.
D. Nebel, et al., “Median variants of learning vector quantization for learning of dissimilarity data”, Neurocomputing, vol. 169, 2015, pp. 295-305.
Nebel, D., Hammer, B., Frohberg, K., Villmann, T.: Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing. 169, 295-305 (2015).
Nebel, David, Hammer, Barbara, Frohberg, Kathleen, and Villmann, Thomas. “Median variants of learning vector quantization for learning of dissimilarity data”. Neurocomputing 169.SI (2015): 295-305.