SHAP-IQ: Unified Approximation of any-order Shapley Interactions
Fumagalli F, Muschalik M, Kolpaczki P, Hüllermeier E, Hammer B (2023)
In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems. .
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fumagalli, FabianUniBi ;
Muschalik, Maximilian;
Kolpaczki, Patrick;
Hüllermeier, Eyke;
Hammer, BarbaraUniBi
Einrichtung
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Technische Fakultät > AG Machine Learning
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Projekt
Abstract / Bemerkung
Predominately in explainable artificial intelligence (XAI) research, the
Shapley value (SV) is applied to determine feature attributions for any black
box model. Shapley interaction indices extend the SV to define any-order
feature interactions. Defining a unique Shapley interaction index is an open
research question and, so far, three definitions have been proposed, which
differ by their choice of axioms. Moreover, each definition requires a specific
approximation technique. Here, we propose SHAPley Interaction Quantification
(SHAP-IQ), an efficient sampling-based approximator to compute Shapley
interactions for arbitrary cardinal interaction indices (CII), i.e. interaction
indices that satisfy the linearity, symmetry and dummy axiom. SHAP-IQ is based
on a novel representation and, in contrast to existing methods, we provide
theoretical guarantees for its approximation quality, as well as estimates for
the variance of the point estimates. For the special case of SV, our approach
reveals a novel representation of the SV and corresponds to Unbiased KernelSHAP
with a greatly simplified calculation. We illustrate the computational
efficiency and effectiveness by explaining language, image classification and
high-dimensional synthetic models.
Erscheinungsjahr
2023
Titel des Konferenzbandes
Advances in Neural Information Processing Systems 36 (NeurIPS 2023)
Serien- oder Zeitschriftentitel
Advances in Neural Information Processing Systems
Konferenz
37th Conference on Neural Information Processing Systems (NeurIPS)
Konferenzort
New Orleans, LA
Konferenzdatum
2023-12-10 – 2023-12-16
Page URI
https://pub.uni-bielefeld.de/record/2987580
Zitieren
Fumagalli F, Muschalik M, Kolpaczki P, Hüllermeier E, Hammer B. SHAP-IQ: Unified Approximation of any-order Shapley Interactions. In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems. 2023.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., & Hammer, B. (2023). SHAP-IQ: Unified Approximation of any-order Shapley Interactions. Advances in Neural Information Processing Systems 36 (NeurIPS 2023), Advances in Neural Information Processing Systems
Fumagalli, Fabian, Muschalik, Maximilian, Kolpaczki, Patrick, Hüllermeier, Eyke, and Hammer, Barbara. 2023. “SHAP-IQ: Unified Approximation of any-order Shapley Interactions”. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., and Hammer, B. (2023). “SHAP-IQ: Unified Approximation of any-order Shapley Interactions” in Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Advances in Neural Information Processing Systems.
Fumagalli, F., et al., 2023. SHAP-IQ: Unified Approximation of any-order Shapley Interactions. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems.
F. Fumagalli, et al., “SHAP-IQ: Unified Approximation of any-order Shapley Interactions”, Advances in Neural Information Processing Systems 36 (NeurIPS 2023), Advances in Neural Information Processing Systems, 2023.
Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., Hammer, B.: SHAP-IQ: Unified Approximation of any-order Shapley Interactions. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Advances in Neural Information Processing Systems. (2023).
Fumagalli, Fabian, Muschalik, Maximilian, Kolpaczki, Patrick, Hüllermeier, Eyke, and Hammer, Barbara. “SHAP-IQ: Unified Approximation of any-order Shapley Interactions”. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). 2023. Advances in Neural Information Processing Systems.
Link(s) zu Volltext(en)
Access Level
Closed Access
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2303.01179
Suchen in