Contrastive Explanations for Explaining Model Adaptations

Artelt A, Hinder F, Vaquet V, Feldhans R, Hammer B (2021)
In: Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer : 101-112.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Rojas, Ignacio; Joya, Gonzalo; Catala, Andreu
Abstract / Bemerkung
Many decision making systems deployed in the real world are not static - a phenomenon known as model adaptation takes place over time. The need for transparency and interpretability of AI-based decision models is widely accepted and thus have been worked on extensively. Usually, explanation methods assume a static system that has to be explained. Explaining non-static systems is still an open research question, which poses the challenge how to explain model adaptations. In this contribution, we propose and (empirically) evaluate a framework for explaining model adaptations by contrastive explanations. We also propose a method for automatically finding regions in data space that are affected by a given model adaptation and thus should be explained.
Erscheinungsjahr
2021
Titel des Konferenzbandes
Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I
Serien- oder Zeitschriftentitel
Lecture Notes in Computer Science
Seite(n)
101-112
Konferenz
16th International Work-Conference on Artificial Neural Networks, IWANN 2021
Konferenzort
Virtual Event
Konferenzdatum
2021-06-16 – 2021-06-18
ISBN
978-3-030-85029-6
eISBN
978-3-030-85030-2
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2957373

Zitieren

Artelt A, Hinder F, Vaquet V, Feldhans R, Hammer B. Contrastive Explanations for Explaining Model Adaptations. In: Rojas I, Joya G, Catala A, eds. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer ; 2021: 101-112.
Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., & Hammer, B. (2021). Contrastive Explanations for Explaining Model Adaptations. In I. Rojas, G. Joya, & A. Catala (Eds.), Lecture Notes in Computer Science. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I (pp. 101-112). Cham: Springer . https://doi.org/10.1007/978-3-030-85030-2_9
Artelt, André, Hinder, Fabian, Vaquet, Valerie, Feldhans, Robert, and Hammer, Barbara. 2021. “Contrastive Explanations for Explaining Model Adaptations”. In Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I, ed. Ignacio Rojas, Gonzalo Joya, and Andreu Catala, 101-112. Lecture Notes in Computer Science. Cham: Springer .
Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., and Hammer, B. (2021). “Contrastive Explanations for Explaining Model Adaptations” in Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer ), 101-112.
Artelt, A., et al., 2021. Contrastive Explanations for Explaining Model Adaptations. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer , pp. 101-112.
A. Artelt, et al., “Contrastive Explanations for Explaining Model Adaptations”, Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I, I. Rojas, G. Joya, and A. Catala, eds., Lecture Notes in Computer Science, Cham: Springer , 2021, pp.101-112.
Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., Hammer, B.: Contrastive Explanations for Explaining Model Adaptations. In: Rojas, I., Joya, G., and Catala, A. (eds.) Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Lecture Notes in Computer Science. p. 101-112. Springer , Cham (2021).
Artelt, André, Hinder, Fabian, Vaquet, Valerie, Feldhans, Robert, and Hammer, Barbara. “Contrastive Explanations for Explaining Model Adaptations”. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Ed. Ignacio Rojas, Gonzalo Joya, and Andreu Catala. Cham: Springer , 2021. Lecture Notes in Computer Science. 101-112.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche