SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification
Kolpaczki P, Muschalik M, Fumagalli F, Hammer B, Hüllermeier E (2024)
In: International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Dasgupta S, Mandt S, Li Y (Eds); Proceedings of Machine Learning Research, 238. San Diego: PMLR: 3520-3528.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kolpaczki, Patrick;
Muschalik, Maximilian;
Fumagalli, FabianUniBi ;
Hammer, BarbaraUniBi ;
Hüllermeier, Eyke
Herausgeber*in
Dasgupta, Sanjoy;
Mandt, Stephan;
Li, Yingzhen
Projekt
Abstract / Bemerkung
Addressing the limitations of individual at-
tribution scores via the Shapley value (SV),
the field of explainable AI (XAI) has recently
explored intricate interactions of features or
data points. In particular, extensions of the
SV, such as the Shapley Interaction Index
(SII), have been proposed as a measure to
still benefit from the axiomatic basis of the
SV. However, similar to the SV, their exact
computation remains computationally pro-
hibitive. Hence, we propose with SVARM-IQ
a sampling-based approach to efficiently ap-
proximate Shapley-based interaction indices
of any order. SVARM-IQ can be applied to
a broad class of interaction indices, includ-
ing the SII, by leveraging a novel stratified
representation. We provide non-asymptotic
theoretical guarantees on its approximation
quality and empirically demonstrate that
SVARM-IQ achieves state-of-the-art estima-
tion results in practical XAI scenarios on dif-
ferent model classes and application domains.
Erscheinungsjahr
2024
Titel des Konferenzbandes
International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain
Serien- oder Zeitschriftentitel
Proceedings of Machine Learning Research
Band
238
Seite(n)
3520-3528
Konferenz
International Conference on Artificial Intelligence and Statistics
Konferenzort
Valencia, Spain
Konferenzdatum
2024-05-02 – 2024-05-04
ISSN
2640-3498
Page URI
https://pub.uni-bielefeld.de/record/2991394
Zitieren
Kolpaczki P, Muschalik M, Fumagalli F, Hammer B, Hüllermeier E. SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In: Dasgupta S, Mandt S, Li Y, eds. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. Vol 238. San Diego: PMLR; 2024: 3520-3528.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., & Hüllermeier, E. (2024). SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In S. Dasgupta, S. Mandt, & Y. Li (Eds.), Proceedings of Machine Learning Research: Vol. 238. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain (pp. 3520-3528). San Diego: PMLR.
Kolpaczki, Patrick, Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. 2024. “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”. In International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, ed. Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li, 238:3520-3528. Proceedings of Machine Learning Research. San Diego: PMLR.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024). “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification” in International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, Dasgupta, S., Mandt, S., and Li, Y. eds. Proceedings of Machine Learning Research, vol. 238, (San Diego: PMLR), 3520-3528.
Kolpaczki, P., et al., 2024. SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In S. Dasgupta, S. Mandt, & Y. Li, eds. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. no.238 San Diego: PMLR, pp. 3520-3528.
P. Kolpaczki, et al., “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”, International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, S. Dasgupta, S. Mandt, and Y. Li, eds., Proceedings of Machine Learning Research, vol. 238, San Diego: PMLR, 2024, pp.3520-3528.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In: Dasgupta, S., Mandt, S., and Li, Y. (eds.) International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. 238, p. 3520-3528. PMLR, San Diego (2024).
Kolpaczki, Patrick, Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Ed. Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li. San Diego: PMLR, 2024.Vol. 238. Proceedings of Machine Learning Research. 3520-3528.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2401.13371
Suchen in