SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification

Kolpaczki P, Muschalik M, Fumagalli F, Hammer B, Hüllermeier E (2024)
In: International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Dasgupta S, Mandt S, Li Y (Eds); Proceedings of Machine Learning Research, 238. San Diego: PMLR: 3520-3528.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kolpaczki, Patrick; Muschalik, Maximilian; Fumagalli, FabianUniBi ; Hammer, BarbaraUniBi ; Hüllermeier, Eyke
Herausgeber*in
Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen
Abstract / Bemerkung
Addressing the limitations of individual at- tribution scores via the Shapley value (SV), the field of explainable AI (XAI) has recently explored intricate interactions of features or data points. In particular, extensions of the SV, such as the Shapley Interaction Index (SII), have been proposed as a measure to still benefit from the axiomatic basis of the SV. However, similar to the SV, their exact computation remains computationally pro- hibitive. Hence, we propose with SVARM-IQ a sampling-based approach to efficiently ap- proximate Shapley-based interaction indices of any order. SVARM-IQ can be applied to a broad class of interaction indices, includ- ing the SII, by leveraging a novel stratified representation. We provide non-asymptotic theoretical guarantees on its approximation quality and empirically demonstrate that SVARM-IQ achieves state-of-the-art estima- tion results in practical XAI scenarios on dif- ferent model classes and application domains.
Erscheinungsjahr
2024
Titel des Konferenzbandes
International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain
Serien- oder Zeitschriftentitel
Proceedings of Machine Learning Research
Band
238
Seite(n)
3520-3528
Konferenz
International Conference on Artificial Intelligence and Statistics
Konferenzort
Valencia, Spain
Konferenzdatum
2024-05-02 – 2024-05-04
ISSN
2640-3498
Page URI
https://pub.uni-bielefeld.de/record/2991394

Zitieren

Kolpaczki P, Muschalik M, Fumagalli F, Hammer B, Hüllermeier E. SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In: Dasgupta S, Mandt S, Li Y, eds. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. Vol 238. San Diego: PMLR; 2024: 3520-3528.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., & Hüllermeier, E. (2024). SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In S. Dasgupta, S. Mandt, & Y. Li (Eds.), Proceedings of Machine Learning Research: Vol. 238. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain (pp. 3520-3528). San Diego: PMLR.
Kolpaczki, Patrick, Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. 2024. “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”. In International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, ed. Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li, 238:3520-3528. Proceedings of Machine Learning Research. San Diego: PMLR.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024). “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification” in International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, Dasgupta, S., Mandt, S., and Li, Y. eds. Proceedings of Machine Learning Research, vol. 238, (San Diego: PMLR), 3520-3528.
Kolpaczki, P., et al., 2024. SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In S. Dasgupta, S. Mandt, & Y. Li, eds. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. no.238 San Diego: PMLR, pp. 3520-3528.
P. Kolpaczki, et al., “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”, International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, S. Dasgupta, S. Mandt, and Y. Li, eds., Proceedings of Machine Learning Research, vol. 238, San Diego: PMLR, 2024, pp.3520-3528.
Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. In: Dasgupta, S., Mandt, S., and Li, Y. (eds.) International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research. 238, p. 3520-3528. PMLR, San Diego (2024).
Kolpaczki, Patrick, Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification”. International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Ed. Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li. San Diego: PMLR, 2024.Vol. 238. Proceedings of Machine Learning Research. 3520-3528.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 2401.13371

Suchen in

Google Scholar