Non-negative Local Sparse Coding for Subspace Clustering

Hosseini B, Hammer B (2018)
In: Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Duivesteijn W, Siebes A, Ukkonen A (Eds); Lecture Notes in Computer Science. Cham: Springer International Publishing: 137-150.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Duivesteijn, Wouter; Siebes, Arno; Ukkonen, Antti
Abstract / Bemerkung
Subspace sparse coding (SSC) algorithms have proven to be beneficial to the clustering problems. They provide an alternative data representation in which the underlying structure of the clusters can be better captured. However, most of the research in this area is mainly focused on enhancing the sparse coding part of the problem. In contrast, we introduce a novel objective term in our proposed SSC framework which focuses on the separability of data points in the coding space. We also provide mathematical insights into how this local-separability term improves the clustering result of the SSC framework. Our proposed non-linear local SSC algorithm (NLSSC) also benefits from the efficient choice of its sparsity terms and constraints. The NLSSC algorithm is also formulated in the kernel-based framework (NLKSSC) which can represent the nonlinear structure of data. In addition, we address the possibility of having redundancies in sparse coding results and its negative effect on graph-based clustering problems. We introduce the link-restore post-processing step to improve the representation graph of non-negative SSC algorithms such as ours. Empirical evaluations on well-known clustering benchmarks show that our proposed NLSSC framework results in better clusterings compared to the state-of-the-art baselines and demonstrate the effectiveness of the link-restore post-processing in improving the clustering accuracy via correcting the broken links of the representation graph.
Erscheinungsjahr
2018
Buchtitel
Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings
Serientitel
Lecture Notes in Computer Science
Seite(n)
137-150
ISBN
978-3-030-01767-5
eISBN
978-3-030-01768-2
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2982090

Zitieren

Hosseini B, Hammer B. Non-negative Local Sparse Coding for Subspace Clustering. In: Duivesteijn W, Siebes A, Ukkonen A, eds. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing; 2018: 137-150.
Hosseini, B., & Hammer, B. (2018). Non-negative Local Sparse Coding for Subspace Clustering. In W. Duivesteijn, A. Siebes, & A. Ukkonen (Eds.), Lecture Notes in Computer Science. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings (pp. 137-150). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01768-2_12
Hosseini, Babak, and Hammer, Barbara. 2018. “Non-negative Local Sparse Coding for Subspace Clustering”. In Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings, ed. Wouter Duivesteijn, Arno Siebes, and Antti Ukkonen, 137-150. Lecture Notes in Computer Science. Cham: Springer International Publishing.
Hosseini, B., and Hammer, B. (2018). “Non-negative Local Sparse Coding for Subspace Clustering” in Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings, Duivesteijn, W., Siebes, A., and Ukkonen, A. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 137-150.
Hosseini, B., & Hammer, B., 2018. Non-negative Local Sparse Coding for Subspace Clustering. In W. Duivesteijn, A. Siebes, & A. Ukkonen, eds. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 137-150.
B. Hosseini and B. Hammer, “Non-negative Local Sparse Coding for Subspace Clustering”, Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings, W. Duivesteijn, A. Siebes, and A. Ukkonen, eds., Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp.137-150.
Hosseini, B., Hammer, B.: Non-negative Local Sparse Coding for Subspace Clustering. In: Duivesteijn, W., Siebes, A., and Ukkonen, A. (eds.) Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Lecture Notes in Computer Science. p. 137-150. Springer International Publishing, Cham (2018).
Hosseini, Babak, and Hammer, Barbara. “Non-negative Local Sparse Coding for Subspace Clustering”. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings. Ed. Wouter Duivesteijn, Arno Siebes, and Antti Ukkonen. Cham: Springer International Publishing, 2018. Lecture Notes in Computer Science. 137-150.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche