Efficient rejection strategies for prototype-based classification
Fischer L, Hammer B, Wersing H (2015)
Neurocomputing 169(SI): 334-342.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Abstract / Bemerkung
Due to Intuitive training algorithms and model representation, prototype-based models are popular in settings where on-line learning and model interpretability play a major role. In such cases, a crucial property of a classifier is not only which class to predict, but also if a reliable decision is possible in the first place, or whether it is better to reject a decision. While strong theoretical results for optimum reject options in the case of known probability distributions or estimations thereof are available, there do not exist well-accepted reject strategies for deterministic prototype-based classifiers. In this contribution, we present simple and efficient reject options for prototype-based classification, and we evaluate their performance on artificial and benchmark data sets using the example of learning vector quantization. We demonstrate that the proposed reject options improve the accuracy in most cases, and their performance is comparable to an optimal reject option of the Bayes classifier in cases where the latter is available. Further, we show that the results are comparable to a well established reject option for support vector machines in cases where learning vector quantization classifiers are suitable for the given classification task, even providing better results in some cases. (C) 2015 Elsevier B.V. All rights reserved.
Stichworte
Classification;
Prototype-based;
Global;
Rejection
Erscheinungsjahr
2015
Zeitschriftentitel
Neurocomputing
Band
169
Ausgabe
SI
Seite(n)
334-342
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2772413
Zitieren
Fischer L, Hammer B, Wersing H. Efficient rejection strategies for prototype-based classification. Neurocomputing. 2015;169(SI):334-342.
Fischer, L., Hammer, B., & Wersing, H. (2015). Efficient rejection strategies for prototype-based classification. Neurocomputing, 169(SI), 334-342. doi:10.1016/j.neucom.2014.10.092
Fischer, Lydia, Hammer, Barbara, and Wersing, Heiko. 2015. “Efficient rejection strategies for prototype-based classification”. Neurocomputing 169 (SI): 334-342.
Fischer, L., Hammer, B., and Wersing, H. (2015). Efficient rejection strategies for prototype-based classification. Neurocomputing 169, 334-342.
Fischer, L., Hammer, B., & Wersing, H., 2015. Efficient rejection strategies for prototype-based classification. Neurocomputing, 169(SI), p 334-342.
L. Fischer, B. Hammer, and H. Wersing, “Efficient rejection strategies for prototype-based classification”, Neurocomputing, vol. 169, 2015, pp. 334-342.
Fischer, L., Hammer, B., Wersing, H.: Efficient rejection strategies for prototype-based classification. Neurocomputing. 169, 334-342 (2015).
Fischer, Lydia, Hammer, Barbara, and Wersing, Heiko. “Efficient rejection strategies for prototype-based classification”. Neurocomputing 169.SI (2015): 334-342.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in