Cancer Informatics by Prototype-networks in Mass Spectrometry
Schleif F-M, Villmann T, Kostrzewa M, Hammer B, Gammerman A (2009)
Artificial Intelligence in Medicine 45(2-3): 215-228.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Erscheinungsjahr
2009
Zeitschriftentitel
Artificial Intelligence in Medicine
Band
45
Ausgabe
2-3
Seite(n)
215-228
ISSN
0933-3657
Page URI
https://pub.uni-bielefeld.de/record/1993984
Zitieren
Schleif F-M, Villmann T, Kostrzewa M, Hammer B, Gammerman A. Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine. 2009;45(2-3):215-228.
Schleif, F. - M., Villmann, T., Kostrzewa, M., Hammer, B., & Gammerman, A. (2009). Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine, 45(2-3), 215-228. https://doi.org/10.1016/j.artmed.2008.07.018
Schleif, Frank-Michael, Villmann, T., Kostrzewa, M., Hammer, Barbara, and Gammerman, A. 2009. “Cancer Informatics by Prototype-networks in Mass Spectrometry”. Artificial Intelligence in Medicine 45 (2-3): 215-228.
Schleif, F. - M., Villmann, T., Kostrzewa, M., Hammer, B., and Gammerman, A. (2009). Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine 45, 215-228.
Schleif, F.-M., et al., 2009. Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine, 45(2-3), p 215-228.
F.-M. Schleif, et al., “Cancer Informatics by Prototype-networks in Mass Spectrometry”, Artificial Intelligence in Medicine, vol. 45, 2009, pp. 215-228.
Schleif, F.-M., Villmann, T., Kostrzewa, M., Hammer, B., Gammerman, A.: Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine. 45, 215-228 (2009).
Schleif, Frank-Michael, Villmann, T., Kostrzewa, M., Hammer, Barbara, and Gammerman, A. “Cancer Informatics by Prototype-networks in Mass Spectrometry”. Artificial Intelligence in Medicine 45.2-3 (2009): 215-228.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Recent advances in computational analysis of mass spectrometry for proteomic profiling.
Sun CS, Markey MK., J Mass Spectrom 46(5), 2011
PMID: 21500303
Sun CS, Markey MK., J Mass Spectrom 46(5), 2011
PMID: 21500303
A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches.
Sampson DL, Parker TJ, Upton Z, Hurst CP., PLoS One 6(9), 2011
PMID: 21969867
Sampson DL, Parker TJ, Upton Z, Hurst CP., PLoS One 6(9), 2011
PMID: 21969867
Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery.
Matta A, Ralhan R, DeSouza LV, Siu KW., Mass Spectrom Rev 29(6), 2010
PMID: 20945361
Matta A, Ralhan R, DeSouza LV, Siu KW., Mass Spectrom Rev 29(6), 2010
PMID: 20945361
Computational intelligence and machine learning in bioinformatics.
Valentini G, Tagliaferri R, Masulli F., Artif Intell Med 45(2-3), 2009
PMID: 18929473
Valentini G, Tagliaferri R, Masulli F., Artif Intell Med 45(2-3), 2009
PMID: 18929473
Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data.
Zhao W, Davis CE., Anal Chim Acta 651(1), 2009
PMID: 19733729
Zhao W, Davis CE., Anal Chim Acta 651(1), 2009
PMID: 19733729
38 References
Daten bereitgestellt von Europe PubMed Central.
Mass spectrometry-based clinical proteomics.
Pusch W, Flocco MT, Leung SM, Thiele H, Kostrzewa M., Pharmacogenomics 4(4), 2003
PMID: 12831324
Pusch W, Flocco MT, Leung SM, Thiele H, Kostrzewa M., Pharmacogenomics 4(4), 2003
PMID: 12831324
Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Fiedler GM, Baumann S, Leichtle A, Oltmann A, Kase J, Thiery J, Ceglarek U., Clin. Chem. 53(3), 2007
PMID: 17272489
Fiedler GM, Baumann S, Leichtle A, Oltmann A, Kase J, Thiery J, Ceglarek U., Clin. Chem. 53(3), 2007
PMID: 17272489
Magnetic bead based human plasma profiling discriminate acute lymphatic leukaemia from non-diseased samples
Schäffeler, 2004
Schäffeler, 2004
Salivary protein/peptide profiling with SELDI-TOF-MS.
Schipper R, Loof A, de Groot J, Harthoorn L, van Heerde W, Dransfield E., Ann. N. Y. Acad. Sci. 1098(), 2007
PMID: 17435159
Schipper R, Loof A, de Groot J, Harthoorn L, van Heerde W, Dransfield E., Ann. N. Y. Acad. Sci. 1098(), 2007
PMID: 17435159
Optimization and evaluation of surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry for protein profiling of cerebrospinal fluid.
Guerreiro N, Gomez-Mancilla B, Charmont S., Proteome Sci 4(), 2006
PMID: 16643650
Guerreiro N, Gomez-Mancilla B, Charmont S., Proteome Sci 4(), 2006
PMID: 16643650
Bishop, 2006
Supervised neural gas with general similarity measure
Hammer, Neural Processing Letters 21(1), 2005
Hammer, Neural Processing Letters 21(1), 2005
Supervised neural gas and relevance learning in learning vector quantisation
Villmann, 2003
Villmann, 2003
Supervised relevance neural gas and unified maximum separability analysis for classification of mass spectrometric data
Schleif, 2004
Schleif, 2004
Comparison of relevance learning vector quantization with other metric adaptive classification methods
Villmann, Neural Networks 19(15), 2005
Villmann, Neural Networks 19(15), 2005
Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods.
Villmann T, Schleif FM, Kostrzewa M, Walch A, Hammer B., Brief. Bioinformatics 9(2), 2008
PMID: 18334515
Villmann T, Schleif FM, Kostrzewa M, Walch A, Hammer B., Brief. Bioinformatics 9(2), 2008
PMID: 18334515
Analysis of proteomic spectral data by multi resolution analysis and self-organizing-maps
Schleif, 2007
Schleif, 2007
Supervised neural gas for functional data and its application to the analysis of clinical proteom spectra
Schleif, 2007
Schleif, 2007
Vovk, 2005
Hedging predictions in machine learning
Gammerman, The Computer Journal 50(2), 2007
Gammerman, The Computer Journal 50(2), 2007
Fishing for biomarkers: analyzing mass spectrometry data with the new clinprotools software
Ketterlinus, Biotechniques 38(6), 2005
Ketterlinus, Biotechniques 38(6), 2005
AUTHOR UNKNOWN, 0
Exploring alternative wavelet base selection techniques with application to high resolution radar classification
Waagen, 2003
Waagen, 2003
Louis, 1998
A review on applications of wavelet transform techniques in chemical analysis: 1989–1997
Leung, Chemometrics and Intelligent Laboratory Systems 43(1), 1998
Leung, Chemometrics and Intelligent Laboratory Systems 43(1), 1998
Biorthogonal bases of compactly supported wavelets
Cohen, Comm Pure Appl Math 45(5), 1992
Cohen, Comm Pure Appl Math 45(5), 1992
Kohonen, 1995
Generalized learning vector quantization
Sato, 1996
Sato, 1996
Supervised neural gas with general similarity measure
Hammer, Neural Processing Letters 21(1), 2005
Hammer, Neural Processing Letters 21(1), 2005
Supervised neural gas for learning vector quantization
Villmann, 2002
Villmann, 2002
;Neural-gas' network for vector quantization and its application to time-series prediction.
Martinetz TM, Berkovich SG, Schulten KJ., IEEE Trans Neural Netw 4(4), 1993
PMID: 18267757
Martinetz TM, Berkovich SG, Schulten KJ., IEEE Trans Neural Netw 4(4), 1993
PMID: 18267757
On the generalization ability of GRLVQ networks
Hammer, Neural Processing Letters 21(2), 2005
Hammer, Neural Processing Letters 21(2), 2005
Generalized relevance learning vector quantization.
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694
Generalizations of the lp norm for time series and its application to self-organizing maps
Lee, 2005
Lee, 2005
Hastie, 2001
Reliability parameters to improve combination strategies in multi-expert systems
Cordella, Pattern Analysis and Applications 2(3), 1999
Cordella, Pattern Analysis and Applications 2(3), 1999
To reject or not to reject: that is the question: an answer in case of neural classifiers, IEEE Transactions on Systems
de, Man and Cybernetics Part C 30(1), 2000
de, Man and Cybernetics Part C 30(1), 2000
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Prediction algorithms and confidence measures based on algorithmic randomness theory
Gammerman, Theoretical Computer Science 287(), 2002
Gammerman, Theoretical Computer Science 287(), 2002
Visualization of fuzzy information in fuzzy-classification for image sagmentation using MDS
Villmann, 2007
Villmann, 2007
Prediction error estimation: a comparison of resampling methods.
Molinaro AM, Simon R, Pfeiffer RM., Bioinformatics 21(15), 2005
PMID: 15905277
Molinaro AM, Simon R, Pfeiffer RM., Bioinformatics 21(15), 2005
PMID: 15905277
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18778925
PubMed | Europe PMC
Suchen in