551 Publikationen
-
2025 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001606Feldhans, R., and Hammer, B. (2025). “Towards Reliable Drift Detection and Explanation in Text Data” in Intelligent Data Engineering and Automated Learning – IDEAL 2024, PT I Lecture Notes in Computer Science, vol. 15346, (Cham: Springer ), 301-312.PUB | DOI | WoS
-
2025 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 3001658Peters, H., Mazur, A., Pandey, A. K., Trächtler, A., Hammer, B., and Homberg, W. (2025). Development of a digital twin for data-driven modeling of punch-bending processes using a graphical modeling notation. at - Automatisierungstechnik 73, 173-184.PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2989164Velioglu, R., Chan, R. K. - W., and Hammer, B. (2024). “FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation” in 2024 International Joint Conference on Neural Networks (IJCNN) IEEE International Joint Conference on Neural Networks (IJCNN) (New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS | arXiv
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001615Markmann, T., Straat, M., and Hammer, B. (2024). “Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Benard Convection” in 2024 International Joint Conference on Neural Networks (IJCNN) IEEE International Joint Conference on Neural Networks (IJCNN) (New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001626Internò, C., Olhofer, M., Jin, Y., and Hammer, B. (2024). “Federated Loss Exploration for Improved Convergence on Non-IID Data” in 2024 International Joint Conference on Neural Networks (IJCNN) IEEE International Joint Conference on Neural Networks (IJCNN) (New York: Institute of Electrical and Electronics Engineers (IEEE).PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993740Vaquet, V., Hinder, F., Vaquet, J., Lammers, K., Quakernack, L., and Hammer, B. (2024). “Localizing of Anomalies in Critical Infrastructure using Model-Based Drift Explanations” in 2024 International Joint Conference on Neural Networks (IJCNN) (IEEE), 1-8.PUB | DOI | WoS
-
-
2024 | Konferenzbeitrag | PUB-ID: 3000176Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., and Hammer, B. (2024). “KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions” in Proceedings of the 41st International Conference on Machine Learning, Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F. eds. Proceedings of Machine Learning Research, vol. 235, (PMLR), 14308-14342.PUB
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993714Mazur, A., Roberts, J. (I. ), Leins, D., Schulz, A., and Hammer, B. (2024). “Visualizing and Improving 3D Mesh Segmentation with DeepView” in ESANN 2024 proceedings (Louvain-la-Neuve (Belgium): Ciaco - i6doc.com), 649-654.PUB | PDF | DOI | Download (ext.)
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2993739Vaquet, V., Hinder, F., Artelt, A., Ashraf, I., Strotherm, J., Vaquet, J., Brinkrolf, J., and Hammer, B. (2024). “Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks” in Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX, Wand, M., Malinovská, K., Schmidhuber, J., and Tetko, I. V. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 155-170.PUB | DOI | WoS
-
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2994158Hammer, B. (2024). “Explaining Neural Networks - Deep and Shallow” in Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond (WSOM+ 2024) , Villmann, T., Kaden, M., Geweniger, T., and Schleif, F. - M. eds. Lecture Notes in Networks and Systems, vol. 1087, (Cham: Springer ), 139-140.PUB | DOI | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2991394Kolpaczki, P., Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024). “SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification” in International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, Dasgupta, S., Mandt, S., and Li, Y. eds. Proceedings of Machine Learning Research, vol. 238, (San Diego: PMLR), 3520-3528.PUB | WoS | arXiv
-
-
2024 | Konferenzbeitrag | PUB-ID: 2992095Störck, F., Hinder, F., Brinkrolf, J., Paaßen, B., Vaquet, V., and Hammer, B. (2024). “FairGLVQ: Fairness in Partition-Based Classification” in Proceedings of the 15th International Workshop on Self-Organizing Maps (WSOM 2024), Villmann, T., Kaden, M., Geweniger, T., and Schleif, F. - M. eds. (Cham: Springer Nature Switzerland), 141-151.PUB | DOI | Download (ext.) | WoS
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993721Peters, H., Djakow, E., Rostek, T., Mazur, A., Trächtler, A., Homberg, W., and Hammer, B. (2024). “Novel approach for data-driven modelling of multi-stage straightening and bending processes” in Material Forming: ESAFORM 2024 Materials Research Proceedings, vol. 41, (Materials Research Forum LLC), 2289-2298.PUB | DOI
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993652Shah, Z. H., Müller, M., Hübner, W., Ortkraß, H., Hammer, B., Huser, T., and Schenck, W. (2024). Image restoration in frequency space using complex-valued CNNs. Frontiers in Artificial Intelligence 7:1353873.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2991468Hinder, F., Vaquet, V., and Hammer, B. (2024). One or two things we know about concept drift—a survey on monitoring in evolving environments. Part B: locating and explaining concept drift. Frontiers in Artificial Intelligence 7.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993744Vaquet, V., Vaquet, J., Hinder, F., Malialis, K., Panayiotou, C., Polycarpou, M., and Hammer, B. (2024). “Self-Supervised Learning from Incrementally Drifting Data Streams” in ESANN 2024 proceesdings (Louvain-la-Neuve (Belgium): Ciaco - i6doc.com), 431-436.PUB | DOI
-
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993741Brinkrolf, J., Vaquet, V., Hinder, F., and Hammer, B. (2024). “Causes of Rejects in Prototype-based Classification Aleatoric vs. Epistemic Uncertainty” in ESANN 2024 proceesdings (Louvain-la-Neuve (Belgium): Ciaco - i6doc.com), 191-196.PUB | DOI
-
2024 | Report | Veröffentlicht | PUB-ID: 2992602Hammer, B., Alaçam, Ö., Arlinghaus, C. S., Brinkmann, M., Dörksen, H., Hoeken, S., Jungeblut, T., Knaup, J., Leite, D., Lohweg, V., et al. (2024). Sustainable Life-Cycle of Intelligent Socio-Technical Systems.PUB | Dateien verfügbar | DOI
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2988509Hinder, F., Vaquet, V., and Hammer, B. (2024). “A Remark on Concept Drift for Dependent Data” in Advances in Intelligent Data Analysis XXII. 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I, Miliou, I., Piatkowski, N., and Papapetrou, P. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 77-89.PUB | DOI | WoS
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2992700Strotherm, J., Müller, A., Hammer, B., and Paaßen, B. (2024). “Fairness in KI-Systemen” in Vertrauen in Künstliche Intelligenz. Eine multi-perspektivische Betrachtung, Schork, S. ed. (Wiesbaden: Springer Fachmedien Wiesbaden), 163-183.PUB | DOI | arXiv
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2992337Zanutto, D., Michalopoulos, C., Chatzistefanou, G. - A., Vamvakeridou-Lyroudia, L., Tsiami, L., Glynis, K., Samartzis, P., Hermes, L., Hinder, F., Vaquet, J., et al. (2024). “A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning” in The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024) (Basel Switzerland: MDPI), 60.PUB | PDF | DOI
-
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2991310Hinder, F., Vaquet, V., and Hammer, B. (2024). One or two things we know about concept drift-a survey on monitoring in evolving environments. Part A: detecting concept drift. Frontiers in Artificial Intelligence 7:1330257.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987572Schroeder, S., Schulz, A., Hinder, F., and Hammer, B. (2024). “Semantic Properties of Cosine Based Bias Scores for Word Embeddings” in Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods. Vol. 1 (Setúbal, Portugal: SCITEPRESS - Science and Technology Publications), 160-168.PUB | DOI
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987573Grimmelsmann, N., Mechtenberg, M., Vieth, M., Schulz, A., Hammer, B., and Schneider, A. (2024). “Predicting the Level of Co-Activation of One Muscle Head from the Other Muscle Head of the Biceps Brachii Muscle by Linear Regression and Shallow Feedforward Neural Networks” in Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies (Setúbal, Portugal: SCITEPRESS - Science and Technology Publications), 611-621.PUB | DOI
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988165Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024). Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence 38, 14388-14396.PUB | DOI
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2988098Vaquet, V., Hinder, F., and Hammer, B. (2024). “Investigating the Suitability of Concept Drift Detection for Detecting Leakages in Water Distribution Networks” in Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods ICPRAM. Volume 1 (SCITEPRESS - Science and Technology Publications), 296-303.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2984049Ashraf, M. I., Hermes, L., Artelt, A., and Hammer, B. (2023). “Spatial Graph Convolution Neural Networks for Water Distribution Systems” in Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings, Crémilleux, B., Hess, S., and Nijssen, S. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 29-41.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983942Muschalik, M., Fumagalli, F., Jagtani, R., Hammer, B., and Hüllermeier, E. (2023). “iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios” in Explainable Artificial Intelligence. First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part I, Longo, L. ed. Communications in Computer and Information Science (Cham: Springer Nature Switzerland), 177-194.PUB | DOI | WoS
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983795Kuhl, U., Artelt, A., and Hammer, B. (2023). “For Better or Worse: The Impact of Counterfactual Explanations’ Directionality on User Behavior in xAI” in Explainable Artificial Intelligence. First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part III, Longo, L. ed. Communications in Computer and Information Science (Cham: Springer Nature Switzerland), 280-300.PUB | DOI | WoS
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987580Fumagalli, F., Muschalik, M., Kolpaczki, P., Hüllermeier, E., and Hammer, B. (2023). “SHAP-IQ: Unified Approximation of any-order Shapley Interactions” in Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Advances in Neural Information Processing Systems.PUB | Download (ext.) | WoS | arXiv
-
-
-
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2985684Kummert, J., Schulz, A., Feldhans, R., Habigt, M., Stemmler, M., Kohler, C., Abel, D., Rossaint, R., and Hammer, B. (2023). “Generating Cardiovascular Data to Improve Training of Assistive Heart Devices” in 2023 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE), 1292-1297.PUB | DOI
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2969734Kuhl, U., Artelt, A., and Hammer, B. (2023). Let's go to the Alien Zoo: Introducing an experimental framework to study usability of counterfactual explanations for machine learning. Frontiers in Computer Science 5:1087929.PUB | PDF | DOI | Download (ext.) | WoS | arXiv
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2985683Feldhans, R., Schulz, A., Kummert, J., Habigt, M., Stemmler, M., Kohler, C., Abel, D., Rossaint, R., and Hammer, B. (2023). “Data Augmentation for Cardiovascular Time Series Data Using WaveNet” in 2023 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE), 836-841.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2980971Strotherm, J., and Hammer, B. (2023).“Fairness-Enhancing Ensemble Classification in Water Distribution Networks”. Presented at the International Work-Conference on Artificial Neural Networks (IWANN) 2023, Ponta Delgada.PUB | DOI | Download (ext.)
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2977934Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B. (2023). “On the Change of Decision Boundary and Loss in Learning with Concept Drift” in Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings, Crémilleux, B., Hess, S., and Nijssen, S. eds. Lecture Notes in Computer Science, vol. 13876, (Cham: Springer ), 182-194.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982167Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B. (2023). “On the Hardness and Necessity of Supervised Concept Drift Detection” in Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods ICPRAM. Vol. 1, De Marsico, M., Sanniti di Baja, G., and Fred, A. eds. (Setúbal: SCITEPRESS - Science and Technology Publications), 164-175.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969381Schroeder, S., Schulz, A., Kenneweg, P., and Hammer, B. (2023). “So Can We Use Intrinsic Bias Measures or Not?” in Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (Setúbal, Portugal: SCITEPRESS - Science and Technology Publications), 403-410.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969382Kenneweg, P., Schroeder, S., Schulz, A., and Hammer, B. (2023). “Debiasing Sentence Embedders Through Contrastive Word Pairs” in Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (Setúbal, Portugal: SCITEPRESS - Science and Technology Publications), 205-212.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969383Artelt, A., Schulz, A., and Hammer, B. (2023). “"Why Here and not There?": Diverse Contrasting Explanations of Dimensionality Reduction” in Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods (Setúbal, Portugal: SCITEPRESS - Science and Technology Publications), 27-38.PUB | DOI | arXiv
-
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983250Vieth, M., Schulz, A., and Hammer, B. (2023). “Extending Drift Detection Methods to Identify When Exactly the Change Happened” in Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 92-104.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983455Liuliakov, A., Schulz, A., Hermes, L., and Hammer, B. (2023). “One-Class Intrusion Detection with Dynamic Graphs” in Artificial Neural Networks and Machine Learning – ICANN 2023. 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part IV, Iliadis, L., Papaleonidas, A., Angelov, P., and Jayne, C. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 537-549.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983943Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2023). “iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams” in Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III, Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., and Bonchi, F. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 428-445.PUB | DOI
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2981289Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B. (2023). Model-based explanations of concept drift. Neurocomputing:126640.PUB | DOI | Download (ext.) | WoS
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2985571Artelt, A., Malialis, K., Panayiotou, C. G., Polycarpou, M. M., and Hammer, B. (2023). “Unsupervised Unlearning of Concept Drift with Autoencoders” in 2023 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE), 703-710.PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982830Hinder, F., and Hammer, B. (2023). “Feature Selection for Concept Drift Detection” in ESANN 2023 Proceedings, Verleysen, M. ed.PUB
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2983759Koundouri, P., Hammer, B., Kuhl, U., and Velias, A. (2023). Behavioral Economics and Neuroeconomics of Environmental Values. Annual Review of Resource Economics 15, 153-176.PUB | DOI | Download (ext.) | WoS
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2984048Schulte-Schüren, C., Wagner, S., Runge, A., Bariamis, D., Hammer, B., Yoneki, E., and Nardi, L. (2023). “Best of both, Structured and Unstructured Sparsity in Neural Networks” in Proceedings of the 3rd Workshop on Machine Learning and Systems (New York, NY, USA: ACM), 104-108.PUB | DOI
-
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983457Schroeder, S., Schulz, A., Tarakanov, I., Feldhans, R., and Hammer, B. (2023). “Measuring Fairness with Biased Data: A Case Study on the Effects of Unsupervised Data in Fairness Evaluation” in Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 134-145.PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983406Stahlhofen, P., Artelt, A., Hermes, L., and Hammer, B. (2023). “Adversarial Attacks on Leakage Detectors in Water Distribution Networks” in Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part II, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 451-463.PUB | DOI | Preprint
-
-
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2962746Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., and Hammer, B. (2022). Contrasting Explanations for Understanding and Regularizing Model Adaptations. Neural Processing Letters 55, 5273–5297.PUB | PDF | DOI | Download (ext.) | WoS
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2967683Kenneweg, P., Stallmann, D., and Hammer, B. (2022). Novel transfer learning schemes based on Siamese networks and synthetic data. Neural Computing and Applications 35, 8423–8436.PUB | PDF | DOI | Download (ext.) | WoS | PubMed | Europe PMC
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982135Jakob, J., Hasenjäger, M., and Hammer, B. (2022). “Reject Options for Incremental Regression Scenarios” in Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV, Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., and Aydin, M. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 248-259.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969736Kuhl, U., Artelt, A., and Hammer, B. (2022). “Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting” in 2022 ACM Conference on Fairness, Accountability, and Transparency (New York, NY, USA: ACM), 2125-2137.PUB | DOI | Download (ext.)
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969235Castellani, A., Schmitt, S., and Hammer, B. (2022). “Stream-Based Active Learning with Verification Latency in Non-stationary Environments” in Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV, Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., and Aydin, M. eds. Lecture Notes in Computer Science, vol. 13532, (Cham: Springer Nature Switzerland), 260-272.PUB | DOI | Download (ext.)
-
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2967296Velioglu, R., Göpfert, J. P., Artelt, A., and Hammer, B. (2022). “Explainable Artificial Intelligence for Improved Modeling of Processes” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Yin, H., Camacho, D., and Tino, P. eds. Lecture Notes in Computer Science, vol. 13756, (Cham: Springer International Publishing), 313-325.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2969459Jakob, J., Artelt, A., Hasenjäger, M., and Hammer, B. (2022). “SAM-kNN Regressor for Online Learning in Water Distribution Networks” in Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III, Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., and Aydin, M. eds. Lecture Notes in Computer Science, vol. 13531, (Cham: Springer Nature ), 752-762.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969460Artelt, A., Brinkrolf, J., Visser, R., and Hammer, B. (2022). “Explaining Reject Options of Learning Vector Quantization Classifiers” in Proceedings of the 14th International Joint Conference on Computational Intelligence (SCITEPRESS - Science and Technology Publications), 249-261.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2966088Hinder, F., Vaquet, V., Brinkrolf, J., Artelt, A., and Hammer, B. (2022). “Localization of Concept Drift: Identifying the Drifting Datapoints” in 2022 International Joint Conference on Neural Networks (IJCNN) (IEEE), 1-9.PUB | DOI | Download (ext.)
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2967410Vieth, M., Grimmelsmann, N., Schneider, A., and Hammer, B. (2022). “Efficient Sensor Selection for Individualized Prediction Based on Biosignals” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Yin, H., Camacho, D., and Tino, P. eds. Lecture Notes in Computer Science, vol. 13756, (Cham: Springer International Publishing), 326-337.PUB | DOI | Download (ext.)
-
-
2022 | Konferenzbeitrag | Angenommen | PUB-ID: 2964534Vaquet, V., Hinder, F., Brinkrolf, J., Menz, P., Seiffert, U., and Hammer, B. (Accepted).“Federated learning vector quantization for dealing with drift between nodes”. Presented at the 30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2022, Bruges.PUB
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2964421Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2022). Agnostic Explanation of Model Change based on Feature Importance. KI - Künstliche Intelligenz.PUB | DOI | Download (ext.) | WoS
-
2022 | Report | Veröffentlicht | PUB-ID: 2965286Artelt, A., Geminn, C., Hammer, B., Manzeschke, A., Mavrina, L., and Weber, C. (2022). Faire Algorithmen und die Fairness von Erklärungen: Informatische, rechtliche und ethische Perspektiven. DuEPublico: Duisburg-Essen Publications online, University of Duisburg-Essen, Germany.PUB | DOI | Download (ext.)
-
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2962650Vaquet, V., Artelt, A., Brinkrolf, J., and Hammer, B. (2022).“Taking care of our drinking water: Dealing with Sensor Faults in Water Distribution Networks”. Presented at the 31st International Conference on Artificial Neural Networks, Bristol.PUB | PDF
-
2022 | Kurzbeitrag Konferenz / Poster | PUB-ID: 2962861Hinder, F., Vaquet, V., Brinkrolf, J., Artelt, A., and Hammer, B. (2022).“Localization of Concept Drift: Identifying the Drifting Datapoints”.PUB
-
2022 | Preprint | PUB-ID: 2962919Artelt, A., Vrachimis, S., Eliades, D., Polycarpou, M., and Hammer, B. (2022). One Explanation to Rule them All — Ensemble Consistent Explanations. ArXiv:2205.08974 .PUB | PDF | Download (ext.) | arXiv
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2967096Kenneweg, P., Schulz, A., Schroeder, S., and Hammer, B. (2022). “Intelligent Learning Rate Distribution to Reduce Catastrophic Forgetting in Transformers” in Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Yin, H., Camacho, D., and Tino, P. eds. Lecture Notes in Computer Science, vol. 13756, (Cham: Springer International Publishing), 252-261.PUB | DOI
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2987492Savic, D., Hammer, B., Koundouri, P., and Polycarpou, M. (2022). “Long-Term Transitioning of Water Distribution Systems: ERC Water-Futures Project” in Proceedings - 2nd International Join Conference on Water Distribution System Analysis (WDSA)& Computing and Control in the Water Industry (CCWI) (València: Editorial Universitat Politècnica de València).PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2984050Hinder, F., Vaquet, V., and Hammer, B. (2022). “Suitability of Different Metric Choices for Concept Drift Detection” in Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings, Bouadi, T., Fromont, E., and Hüllermeier, E. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 157-170.PUB | DOI
-
2022 | Zeitschriftenaufsatz | PUB-ID: 2978998Paaßen, B., Schulz, A., C. Stewart, T., and Hammer, B. (2022). Reservoir Memory Machines as Neural Computers. IEEE Transactions on Neural Networks and Learning Systems 33, 2575–2585.PUB | DOI | Download (ext.) | arXiv
-
2022 | Report | Veröffentlicht | PUB-ID: 2965622Hammer, B., Hüllermeier, E., Lohweg, V., Schneider, A., Schenck, W., Kuhl, U., Braun, M., Pfeifer, A., Holst, C. - A., Schmidt, M., et al. (2022). Schlussbericht ITS.ML: Intelligente Technische Systeme der nächsten Generation durch Maschinelles Lernen. Forschungsvorhaben zur automatisierten Analyse von Daten mittels Maschinellen Lernens. Bielefeld: Univ. Bielefeld, Forschungsinstitut für Kognition und Robotik.PUB | PDF | DOI
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958662Schilling, M., Melnik, A., Ohl, F. W., Ritter, H., and Hammer, B. (2021). Decentralized control and local information for robust and adaptive decentralized Deep Reinforcement Learning. Neural Networks 144, 699-725.PUB | DOI | Download (ext.) | WoS | PubMed | Europe PMC
-
-
-
2021 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982165Liuliakov, A., and Hammer, B. (2021). “AutoML Technologies for the Identification of Sparse Models” in Intelligent Data Engineering and Automated Learning – IDEAL 2021. 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings, Yin, H., Camacho, D., Tino, P., Allmendinger, R., Tallón-Ballesteros, A. J., Tang, K., Cho, S. - B., Novais, P., and Nascimento, S. eds. Lecture Notes in Computer Science, vol. 13113, (Cham: Springer ), 65-75.PUB | DOI
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2969237Castellani, A., Schmitt, S., and Hammer, B. (2021). “Estimating the Electrical Power Output of Industrial Devices with End-to-End Time-Series Classification in the Presence of Label Noise” in Machine Learning and Knowledge Discovery in Databases. Research Track. European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I, Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., and Lozano, J. A. eds. Lecture Notes in Computer Science, vol. 12975, (Cham: Springer International Publishing), 469-484.PUB | DOI | Download (ext.)
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2957340Artelt, A., and Hammer, B. (2021). Efficient computation of counterfactual explanations and counterfactual metrics of prototype-based classifiers. Neurocomputing 470, 304-317.PUB | DOI | Download (ext.) | WoS
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957373Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., and Hammer, B. (2021). “Contrastive Explanations for Explaining Model Adaptations” in Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer ), 101-112.PUB | DOI
-
2021 | Preprint | PUB-ID: 2959899Artelt, A., and Hammer, B. (2021). Convex optimization for actionable & plausible counterfactual explanations. arXiv: 2105.07630v1.PUB | Download (ext.) | arXiv
-
2021 | Konferenzbeitrag | PUB-ID: 2959428Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B. (2021). Fast Non-Parametric Conditional Density Estimation using Moment Trees. IEEE Computational Intelligence Magazine.PUB
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2960754Hinder, F., Brinkrolf, J., Vaquet, V., and Hammer, B. (2021). “A Shape-Based Method for Concept Drift Detection and Signal Denoising” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings (Piscataway, NJ: IEEE), 01-08.PUB | DOI
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2960755Hinder, F., Vaquet, V., Brinkrolf, J., and Hammer, B. (2021). “Fast Non-Parametric Conditional Density Estimation using Moment Trees” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings (Piscataway, NJ: IEEE), 1-7.PUB | DOI
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2960685Vaquet, V., Menz, P., Seiffert, U., and Hammer, B. (2021). “Investigating Intensity and Transversal Drift in Hyperspectral Imaging Data” in ESANN 2021 proceedings, Verleysen, M. ed. (Louvain-la-Neuve (Belgium): Ciaco - i6doc.com), 47-52.PUB | DOI
-
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2962747Artelt, A., Vaquet, V., Velioglu, R., Hinder, F., Brinkrolf, J., Schilling, M., and Hammer, B. (2021). “Evaluating Robustness of Counterfactual Explanations” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (Piscataway, NJ: IEEE), 01-09.PUB | DOI
-
2021 | Report | Veröffentlicht | PUB-ID: 2954239Szczuka, J., Artelt, A., Geminn, C., Hammer, B., Kopp, S., Manzeschke, A., Rossnagel, A., Slawik, P., Strathmann, C., Szymczyk, N., et al. (2021). Können Kinder aufgeklärte Nutzer* innen von Sprachassistenten sein? Rechtliche, psychologische, ethische und informatische Perspektiven. Essen: Universität Duisburg-Essen, Universitätsbibliothek.PUB | DOI
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957588Artelt, A., and Hammer, B. (2021). “Efficient computation of contrastive explanations” in 2021 International Joint Conference on Neural Networks (IJCNN) (New York: Institute of Electrical and Electronics Engineers (IEEE), 1-9.PUB | DOI | Download (ext.)
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2949334Rohlfing, K., Cimiano, P., Scharlau, I., Matzner, T., Buhl, H. M., Buschmeier, H., Esposito, E., Grimminger, A., Hammer, B., Häb-Umbach, R., et al. (2021). Explanation as a social practice: Toward a conceptual framework for the social design of AI systems. IEEE Transactions on Cognitive and Developmental Systems 13, 717--728.PUB | PDF | DOI | WoS
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2954542Paaßen, B., Schulz, A., and Hammer, B. (2021). Reservoir Stack Machines. Neurocomputing 470, 352-364.PUB | DOI | Download (ext.) | WoS | arXiv
-
-
2021 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2956229Paassen, B., Schulz, A., Stewart, T. C., and Hammer, B. (2021). Reservoir Memory Machines as Neural Computers. IEEE Transactions on Neural Networks and Learning Systems, 1-11.PUB | DOI | Download (ext.) | WoS | PubMed | Europe PMC | arXiv
-
2021 | Zeitschriftenaufsatz | Angenommen | PUB-ID: 2955245Stallmann, D., Göpfert, J. P., Schmitz, J., Grünberger, A., and Hammer, B. (Accepted). Towards an automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinformatics .PUB | DOI | WoS | PubMed | Europe PMC
-
2021 | Konferenzbeitrag | PUB-ID: 2958664Hermes, L., Hammer, B., and Schilling, M. (2021). “Application of Graph Convolutions in a Lightweight Model for Skeletal Human Motion Forecasting” in ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. 111-116.PUB | arXiv
-
2021 | Konferenzbeitrag | Angenommen | PUB-ID: 2956774Hinder, F., and Hammer, B. (Accepted). “Concept Drift Segmentation via Kolmogorov Trees” in Proceedings of the ESANN, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed.PUB
-
2021 | Konferenzbeitrag | Angenommen | PUB-ID: 2955948Brinkrolf, J., and Hammer, B. (Accepted). “Federated Learning Vector Quantization” in Proceedings of the ESANN, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed.PUB
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2952937Kummert, J., Schulz, A., Redick, T., Ayoub, N., Modabber, A., Abel, D., and Hammer, B. (2021). Efficient Reject Options for Particle Filter Object Tracking in Medical Applications. Sensors 21:2114.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
-
2020 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2958328Vaquet, V., and Hammer, B. (2020). “Balanced SAM-kNN: Online Learning with Heterogeneous Drift and Imbalanced Data” in Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, Farkaš, I., Masulli, P., and Wermter, S. eds. Lecture Notes in Computer Science, vol. 12397, (Cham: Springer), 850-862.PUB | DOI
-
2020 | Konferenzbeitrag | PUB-ID: 2946488Hinder, F., Artelt, A., and Hammer, B. (2020). “Towards non-parametric drift detection via Dynamic Adapting Window Independence Drift Detection (DAWIDD)” in Proceedings of the 37th International Conference on Machine Learning.PUB | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2946685Artelt, A., and Hammer, B. (2020). “Efficient computation of counterfactual explanations of LVQ models” in ESANN 2020 - proceedings, Verleysen, M. ed. (Louvain-la-Neuve: Ciaco ), 19-24.PUB | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2946761Artelt, A., and Hammer, B. (2020). “Convex Density Constraints for Computing Plausible Counterfactual Explanations” in Artificial Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part {I}, Farkas, I., Masulli, P., and Wermter, S. eds. Lecture Notes in Computer Science, vol. 12396, (Cham: Springer), 353-365.PUB | DOI | Download (ext.)
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957814Krämer, N., Szczuka, J., Rossnagel, A., Geminn, C., Kopp, S., Hammer, B., Mavrina, L., Artelt, A., Manzeschke, A., and Weber, C. (2020). “Improving and Evaluating Conversational User Interfaces for Children” in IUI '20: Proceedings of the 25th International Conference on Intelligent User Interfaces (New York: Association for Computing Machinery).PUB
-
2020 | Konferenzbeitrag | PUB-ID: 2943260Schulz, A., Hinder, F., and Hammer, B. (2020). “DeepView: Visualizing Classification Boundaries of Deep Neural Networks as Scatter Plots Using Discriminative Dimensionality Reduction” in Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI-20}.PUB | DOI | Download (ext.) | arXiv
-
2020 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982081Biehl, M., Abadi, F., Göpfert, C., and Hammer, B. (2020). “Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework” in Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019, Vellido, A., Gibert, K., Angulo, C., and Martín Guerrero, J. D. eds. Advances in Intelligent Systems and Computing (Cham: Springer International Publishing), 210-221.PUB | DOI
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2940666Brinkrolf, J., and Hammer, B. (2020). “Sparse Metric Learning in Prototype-based Classification” in Proceedings of the ESANN, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. 375-380.PUB
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt, L., Jakob, J., Hinder, F., Biehl, M., Tino, P., and Hammer, B. (2020). Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing.PUB | DOI | Download (ext.) | WoS | arXiv
-
-
-
-
2019 | Preprint | PUB-ID: 2959898Artelt, A., and Hammer, B. (2019). On the computation of counterfactual explanations - A survey. arXiv: 1911.07749v1.PUB | Download (ext.) | arXiv
-
2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085Göpfert, J. P., Wersing, H., and Hammer, B. (2019). “Recovering Localized Adversarial Attacks” in Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I, Tetko, I. V., Kůrková, V., Karpov, P., and Theis, F. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 302-311.PUB | DOI
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982084Losing, V., Yoshikawa, T., Hasenjaeger, M., Hammer, B., and Wersing, H. (2019). “Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units” in 2019 International Conference on Robotics and Automation (ICRA) (IEEE), 9530-9536.PUB | DOI
-
-
-
2019 | Monographie | PUB-ID: 2935200Paaßen, B., Artelt, A., and Hammer, B. (2019). Lecture Notes on Applied Optimization. Faculty of Technology, Bielefeld University.PUB | Dateien verfügbar
-
2019 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2934458Prahm, C., Schulz, A., Paaßen, B., Schoisswohl, J., Kaniusas, E., Dorffner, G., Hammer, B., and Aszmann, O. (2019). Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 956-962.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt, L., Jakob, J., Biehl, M., Tino, P., and Hammer, B. (2019). “Feature Relevance Bounds for Ordinal Regression” in Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019), Verleysen, M. ed. ( Louvain-la-Neuve: i6doc).PUB | Download (ext.) | arXiv
-
-
2019 | Konferenzbeitrag | Angenommen | PUB-ID: 2937841Hosseini, B., and Hammer, B. (Accepted).“Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection”. Presented at the The 28th ACM International Conference on Information and Knowledge Management (CIKM) , Beijing.PUB | Datei | arXiv
-
2019 | Report | Veröffentlicht | PUB-ID: 2937888Krämer, N., Artelt, A., Geminn, C., Hammer, B., Kopp, S., Manzeschke, A., Rossnagel, A., Slawik, P., Szczuka, J., Varonina, L., et al. (2019). KI-basierte Sprachassistenten im Alltag: Forschungsbedarf aus informatischer, psychologischer, ethischer und rechtlicher Sicht. Universität Duisburg-Essen, Universitätsbibliothek.PUB | DOI | Download (ext.)
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2937839Hosseini, B., and Hammer, B. (2019).“Interpretable Discriminative Dimensionality Reduction and Feature Selection on the Manifold”. Presented at the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML), Würzburg.PUB | Datei | arXiv
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456Pfannschmidt, L., Göpfert, C., Neumann, U., Heider, D., and Hammer, B. (2019).“FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration”. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy.PUB | PDF | DOI | arXiv
-
-
2019 | Konferenzbeitrag | PUB-ID: 2930303Hosseini, B., and Hammer, B. (2019). “Multiple-Kernel Dictionary Learning for Reconstruction and Clustering of Unseen Multivariate Time-series” in Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019), Verleysen, M. ed.PUB | arXiv
-
-
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2931283Queißer, J., Ishihara, H., Hammer, B., Steil, J. J., and Asada, M. (2018).“Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto”. Presented at the International Conference on Development and Learning and on Epigenetic Robotics 2018 (ICDL-EPIROB2018), Tokyo .PUB | PDF
-
2018 | Datenpublikation | PUB-ID: 2930611Hülsmann, F., Göpfert, J. P., Hammer, B., Kopp, S., and Botsch, M. (2018). Classification of motor errors to provide real-time feedback for sports coaching in virtual reality - A case study in squats and Tai Chi pushes (Data). Bielefeld University.PUB | Dateien verfügbar | DOI
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2930862Hülsmann, F., Göpfert, J. P., Hammer, B., Kopp, S., and Botsch, M. (2018). Classification of motor errors to provide real-time feedback for sports coaching in virtual reality — A case study in squats and Tai Chi pushes. Computers & Graphics 76, 47-59.PUB | DOI | Download (ext.) | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982092Queisser, J. F., Hammer, B., Ishihara, H., Asada, M., and Steil, J. J. (2018). “Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto” in 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (IEEE), 39-45.PUB | DOI
-
2018 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982090Hosseini, B., and Hammer, B. (2018). “Non-negative Local Sparse Coding for Subspace Clustering” in Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings, Duivesteijn, W., Siebes, A., and Ukkonen, A. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 137-150.PUB | DOI
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982089Specht, F., Otto, J., Niggemann, O., and Hammer, B. (2018). “Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems” in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (IEEE), 760-765.PUB | DOI
-
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982086Li, P., Niggemann, O., and Hammer, B. (2018). “A Geometric Approach to Clustering Based Anomaly Detection for Industrial Applications” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society (IEEE), 5345-5352.PUB | DOI
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2932412Straat, M., Abadi, F., Göpfert, C., Hammer, B., and Biehl, M. (2018). Statistical Mechanics of On-Line Learning Under Concept Drift. ENTROPY 20:775.PUB | DOI | WoS | PubMed | Europe PMC
-
2018 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2917896Lux, M., Brinkman, R. R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L., and Hammer, B. (2018). flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics 34, 2245-2253.PUB | DOI | WoS | PubMed | Europe PMC
-
2018 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2933557Meyer, S., Bertrand, O., Egelhaaf, M., and Hammer, B. (2018). “Inferring Temporal Structure from Predictability in Bumblebee Learning Flight” in Intelligent Data Engineering and Automated Learning – IDEAL 2018, Yin, H., Camacho, D., Novais, P., and Tallón-Ballesteros, A. J. eds. Lecture Notes in Computer Science, vol. 11314, (Cham: Springer International Publishing), 508-519.PUB | DOI
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2918254Brinkrolf, J., Berger, K., and Hammer, B. (2018). “Differential private relevance learning” in Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018), Verleysen, M. ed. 555-560.PUB | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2911900Paaßen, B., Göpfert, C., and Hammer, B. (2018). Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters 48, 669-689.PUB | DOI | Download (ext.) | WoS | arXiv
-
2018 | Preprint | Veröffentlicht | PUB-ID: 2921209Hosseini, B., and Hammer, B. (2018). Non-Negative Local Sparse Coding for Subspace Clustering. Advances in Intelligent Data Analysis XVII. IDA 2018.PUB | Datei | Download (ext.) | arXiv
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2919598Hosseini, B., and Hammer, B. (2018). “Feasibility Based Large Margin Nearest Neighbor Metric Learning” in ESANN 2018. Proceedings of 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 219-224.PUB | arXiv
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2914505Paaßen, B., Schulz, A., Hahne, J., and Hammer, B. (2018). Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing 298, 122-133.PUB | DOI | Download (ext.) | WoS | arXiv
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2921316Göpfert, J. P., Hammer, B., and Wersing, H. (2018). “Mitigating Concept Drift via Rejection” in Artificial Neural Networks and Machine Learning – ICANN 2018. Proceedings, Part I, Kurkova, V., Manolopoulos, Y., Hammer, B., Iliadis, L., and Maglogiannis, I. eds. Lecture Notes in Computer Science, vol. 11139, (Cham: Springer).PUB | PDF | DOI
-
-
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2913389Paaßen, B., Hammer, B., Price, T., Barnes, T., Gross, S., and Pinkwart, N. (2018). The Continuous Hint Factory - Providing Hints in Vast and Sparsely Populated Edit Distance Spaces. Journal of Educational Data Mining 10, 1-35.PUB | Download (ext.) | arXiv
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2919844Paaßen, B., Gallicchio, C., Micheli, A., and Hammer, B. (2018). “Tree Edit Distance Learning via Adaptive Symbol Embeddings” in Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Dy, J., and Krause, A. eds. Proceedings of Machine Learning Research, vol. 80, 3973-3982.PUB | Download (ext.) | arXiv
-
-
-
-
-
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909369Paaßen, B., Schulz, A., Hahne, J., and Hammer, B. (2017). “An EM transfer learning algorithm with applications in bionic hand prostheses” in Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017), Verleysen, M. ed. (Bruges: i6doc.com), 129-134.PUB | PDF
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2914945Brinkrolf, J., and Hammer, B. (2017). “Probabilistic extension and reject options for pairwise LVQ” in 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM) (Piscataway, NJ: IEEE).PUB | DOI
-
-
2017 | Konferenzbeitrag | PUB-ID: 2909371Biehl, M., Hammer, B., and Villmann, T. (2017). “Prototype based models for the supervised learning of classificaton schemes” in Proc. of the IAU Symposium 325 on Astroinformatics, Sorrento/Italy, October 2016 in press.PUB
-
2017 | Konferenzbeitrag | PUB-ID: 2914950Brinkrolf, J., Berger, K., and Hammer, B. (2017). “Differential Privacy for Learning Vector Quantization” in New Challenges in Neural Computation.PUB
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201Göpfert, C., Pfannschmidt, L., and Hammer, B. (2017). “Feature Relevance Bounds for Linear Classification” in Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Louvain-la-Neuve: Ciaco - i6doc.com), 187--192.PUB | Dateien verfügbar | Download (ext.)
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2913752Göpfert, J. P., Göpfert, C., Botsch, M., and Hammer, B. (2017). “Effects of Variability in Synthetic Training Data on Convolutional Neural Networks for 3D Head Reconstruction” in 2017 SSCI Proceedings. 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (Piscataway, NJ: IEEE).PUB | PDF | DOI
-
-
2017 | Konferenzbeitrag | PUB-ID: 2909370Frenay, B., and Hammer, B. (2017). “Label-Noise-Tolerant Classification for Streaming Data” in IEEE International Joint Conference on Neural Neworks.PUB
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2914141Aswolinskiy, W., and Hammer, B. (2017). “Unsupervised Transfer Learning for Time Series via Self-Predictive Modelling - First Results” in Proceedings of the Workshop on New Challenges in Neural Computation (NC2) Machine Learning Reports, vol. 03/2017, (Bielefeld: Universität Bielefeld, CITEC).PUB | PDF
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909037Prahm, C., Schulz, A., Paaßen, B., Aszmann, O., Hammer, B., and Dorffner, G. (2017). “Echo State Networks as Novel Approach for Low-Cost Myoelectric Control” in Proceedings of the 16th Conference on Artificial Intelligence in Medicine (AIME 2017), ten Telje, A., Popow, C., Holmes, J. H., and Sacchi, L. eds. Lecture Notes in Computer Science, vol. 10259, (Springer), 338--342.PUB | Dateien verfügbar | DOI
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2915274Göpfert, C., Göpfert, J. P., and Hammer, B. (2017). “Analyzing Feature Relevance for Linear Reject Option SVM using Relevance Intervals” in Proceedings of the 2017 NIPS workshop on Transparent and Interpretable Machine Learning in Safety Critical Environments.PUB | PDF
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904469Hosseini, B., Hülsmann, F., Botsch, M., and Hammer, B. (2016). “Non-Negative Kernel Sparse Coding for the Analysis of Motion Data” in Artificial Neural Networks and Machine Learning – ICANN 2016, E.P. Villa, A., Masulli, P., and Javier Pons Rivero, A. eds. Lecture Notes in Computer Science, vol. 9887, (Cham: Springer), 506-514.PUB | PDF | DOI | Download (ext.) | arXiv
-
-
-
2016 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2907633Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., and Hammer, B. (2016). acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics 17:543.PUB | PDF | DOI | WoS | PubMed | Europe PMC
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909367Kummert, J., Paaßen, B., Jensen, J., Göpfert, C., and Hammer, B. (2016). “Local Reject Option for Deterministic Multi-class SVM” in Artificial Neural Networks and Machine Learning - ICANN 2016 - 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II, E.P. Villa, A., Masulli, P., and Pons Rivero, A. J. eds. Lecture Notes in Computer Science, vol. 9887, (Cham: Springer Nature), 251--258.PUB | DOI
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904509Paaßen, B., Jensen, J., and Hammer, B. (2016). “Execution Traces as a Powerful Data Representation for Intelligent Tutoring Systems for Programming” in Proceedings of the 9th International Conference on Educational Data Mining, Barnes, T., Chi, M., and Feng, M. eds. (Raleigh, North Carolina, USA: International Educational Datamining Society), 183-190.PUB | Download (ext.)
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900676Paaßen, B., Göpfert, C., and Hammer, B. (2016). “Gaussian process prediction for time series of structured data” in Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Louvain-la-Neuve: Ciaco - i6doc.com), 41--46.PUB | PDF
-
2016 | Konferenzbeitrag | E-Veröff. vor dem Druck | PUB-ID: 2904909Schulz, A., and Hammer, B. (2016). “Discriminative Dimensionality Reduction in Kernel Space” in ESANN2016 Proceedings. 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium,27-29 April 2016 (i6doc.com).PUB | PDF
-
2016 | Konferenzbeitrag | PUB-ID: 2909365Brinkrolf, J., Mittag, T., Joppen, R., Dr\, A., Pietsch, K. - H., and Hammer, B. (2016). “Virtual optimisation for improved production planning” in New Challenges in Neural Computation.PUB
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2905729Göpfert, C., Paaßen, B., and Hammer, B. (2016). “Convergence of Multi-pass Large Margin Nearest Neighbor Metric Learning” in Artificial Neural Networks and Machine Learning – ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II, E.P. Villa, A., Masulli, P., and Pons Rivero, A. J. eds. Lecture Notes in Computer Science, vol. 9887, (Cham: Springer Nature), 510-517.PUB | PDF | DOI
-
2016 | Konferenzbeitrag | PUB-ID: 2908455Losing, V., Hammer, B., and Wersing, H. (2016).“Dedicated Memory Models for Continual Learning in the Presence of Concept Drift”. Presented at the Continual Learning Workshop of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona.PUB | PDF
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2905855Paaßen, B., Schulz, A., and Hammer, B. (2016). “Linear Supervised Transfer Learning for Generalized Matrix LVQ” in Proceedings of the Workshop New Challenges in Neural Computation 2016, Hammer, B., Martinetz, T., and Villmann, T. eds. Machine Learning Reports 11-18.PUB | Download (ext.)
-
2016 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2903457Schleif, F. - M., Hammer, B., Gonzalez Monroy, J., Gonzalez Jimenez, J., Blanco-Claraco, J. - L., Biehl, M., and Petkov, N. (2016). Odor recognition in robotics applications by discriminative time-series modeling. PATTERN ANALYSIS AND APPLICATIONS 19, 207-220.PUB | DOI | WoS
-
2016 | Konferenzbeitrag | PUB-ID: 2909368Geppert, er, and Hammer, B. (2016). “Incremental learning algorithms and applications” in ESANN.PUB
-
2016 | Konferenzbeitrag | PUB-ID: 2905195Fischer, L., Hammer, B., and Wersing, H. (2016). “Online Metric Learning for an Adaptation to Confidence Drift” in Proceedings of International Joint Conference on Neural Networks (IJCNN) (Vancouver: IEEE), 748-755.PUB
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904178Prahm, C., Paaßen, B., Schulz, A., Hammer, B., and Aszmann, O. (2016). “Transfer Learning for Rapid Re-calibration of a Myoelectric Prosthesis after Electrode Shift” in Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), Ibáñez, J., Gonzáles-Vargas, J., Azorín, J. M., Akay, M., and Pons, J. L. eds. (Springer), 153--157.PUB | PDF | DOI | Download (ext.)
-
-
2016 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2910957Biehl, M., Hammer, B., and Villmann, T. (2016). Prototype-based models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science 7, 92-111.PUB | DOI | WoS | PubMed | Europe PMC
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2909366Villmann, T., Kaden, M., Bohnsack, A., Villmann, J. M., Drogies, T., Saralajew, S., and Hammer, B. (2016). “Self-Adjusting Reject Options in Prototype Based Classification” in Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016, Merényi, E., Mendenhall, M. J., and O'Driscoll, P. eds. Advances in Intelligent Systems and Computing, vol. 428, (Cham: Springer International Publishing), 269-279.PUB | DOI
-
-
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2752948Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2015). Learning Feedback in Intelligent Tutoring Systems. Report of the FIT Project, Conducted from December 2011 to March 2015. KI - Künstliche Intelligenz 29, 413-418.PUB | PDF | DOI | Download (ext.) | WoS
-
2015 | Preprint | Veröffentlicht | PUB-ID: 2901613Lux, M., Hammer, B., and Sczyrba, A. (2015). Automated Contamination Detection in Single-Cell Sequencing. bioRxiv.PUB
-
-
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2783165Hosseini, B., and Hammer, B. (2015). “Efficient Metric Learning for the Analysis of Motion Data” in 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (Piscataway, NJ: IEEE).PUB | DOI | Download (ext.) | arXiv
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2724156Paaßen, B., Mokbel, B., and Hammer, B. (2015). “Adaptive structure metrics for automated feedback provision in Java programming” in Proceedings of the ESANN, 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. 307-312.PUB | PDF
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2710031Mokbel, B., Paaßen, B., Schleif, F. - M., and Hammer, B. (2015). Metric learning for sequences in relational LVQ. Neurocomputing 169, 306-322.PUB | PDF | DOI | Download (ext.) | WoS
-
-
2015 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2900303Schulz, A., and Hammer, B. (2015). “Visualization of Regression Models Using Discriminative Dimensionality Reduction” in Computer Analysis of Images and Patterns Lecture Notes in Computer Science, vol. 9257, (Cham: Springer Science + Business Media), 437-449.PUB | PDF | DOI
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900325Blöbaum, P., Schulz, A., and Hammer, B. (2015). “Unsupervised Dimensionality Reduction for Transfer Learning” in Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Louvain-la-Neuve: Ciaco), 507-512.PUB | PDF
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900319Schulz, A., and Hammer, B. (2015). “Discriminative dimensionality reduction for regression problems using the Fisher metric” in 2015 International Joint Conference on Neural Networks (IJCNN) (Institute of Electrical & Electronics Engineers (IEEE), 1-8.PUB | DOI
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774707Fischer, L., Hammer, B., and Wersing, H. (2015). “Certainty-based Prototype Insertion/Deletion for Classification with Metric Adaptation” in ESANN, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 7-12.PUB
-
2015 | Konferenzbeitrag | PUB-ID: 2774721Fischer, L., Hammer, B., and Wersing, H. (2015). “Combining Offline and Online Classifiers for Life-long Learning” in IJCNN, International Joint Conference on Neural Networks 2808-2815.PUB
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2762087Paaßen, B., Mokbel, B., and Hammer, B. (2015). “A Toolbox for Adaptive Sequence Dissimilarity Measures for Intelligent Tutoring Systems” in Proceedings of the 8th International Conference on Educational Data Mining, Santos, O. C., Boticario, J. G., Romero, C., Pechenizkiy, M., Merceron, A., Mitros, P., Luna, J. M., Mihaescu, C., Moreno, P., Hershkovitz, A., et al. eds. (International Educational Datamining Society), 632-632.PUB | Download (ext.)
-
2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2752955Walter, O., Häb-Umbach, R., Mokbel, B., Paaßen, B., and Hammer, B. (2015). Autonomous Learning of Representations. KI - Künstliche Intelligenz 29, 339–351.PUB | PDF | DOI | Download (ext.) | WoS
-
-
-
-
-
-
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982100Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2014). “How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning” in Intelligent Tutoring Systems, Trausan-Matu, S., Boyer, K. E., Crosby, M., and Panourgia, K. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 340-347.PUB | DOI
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982099Biehl, M., Hammer, B., and Villmann, T. (2014). “Distance Measures for Prototype Based Classification” in Brain-Inspired Computing. International Workshop, BrainComp 2013, Cetraro, Italy, July 8-11, 2013, Revised Selected Papers, Grandinetti, L., Lippert, T., and Petkov, N. eds. Lecture Notes in Computer Science (Cham: Springer International Publishing), 100-116.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900320Frenay, B., Hofmann, D., Schulz, A., Biehl, M., and Hammer, B. (2014). “Valid interpretation of feature relevance for linear data mappings” in 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (Piscataway, NJ: Institute of Electrical & Electronics Engineers (IEEE), 149-156.PUB | PDF | DOI
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2678214Hofmann, D., Schleif, F. - M., Paaßen, B., and Hammer, B. (2014). Learning interpretable kernelized prototype-based models. Neurocomputing 141, 84-96.PUB | DOI | Download (ext.) | WoS
-
-
-
2014 | Konferenzbeitrag | PUB-ID: 2909360Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2014). “How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning” in Intelligent Tutoring Systems, Trausan-Matu, S., Elizabeth Boyer, K., E. Crosby, M., and Panourgia, K. eds. Lecture Notes in Computer Science, vol. 8474, (Springer), 340-347.PUB
-
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774643Fischer, L., Nebel, D., Villmann, T., Hammer, B., and Wersing, H. (2014). “Rejection Strategies for Learning Vector Quantization – A Comparison of Probabilistic and Deterministic Approaches” in Advances in Self-Organizing Maps and Learning Vector Quantization, Villmann, T., Schleif, F. - M., Kaden, M., and Lange, M. eds. Advances in Intelligent Systems and Computing, vol. 295, (Cham: Springer International Publishing), 109-118.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548Fischer, L., Hammer, B., and Wersing, H. (2014). “Rejection strategies for learning vector quantization” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 41-46.PUB
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2774498Fischer, L., Hammer, B., and Wersing, H. (2014). “Local Rejection Strategies for Learning Vector Quantization” in Artificial Neural Networks and Machine Learning – ICANN 2014, Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., and Villa, A. E. P. eds. Lecture Notes in Computer Science, vol. 8681, (Cham: Springer International Publishing), 563-570.PUB | DOI
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673554Mokbel, B., Paaßen, B., and Hammer, B. (2014). “Adaptive distance measures for sequential data” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 265-270.PUB | PDF
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673559Hammer, B., He, H., and Martinetz, T. (2014). “Learning and modeling big data” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 343-352.PUB
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2734058Gross, S., Mokbel, B., Paaßen, B., Hammer, B., and Pinkwart, N. (2014). Example-based feedback provision using structured solution spaces. International Journal of Learning Technology 9, 248-280.PUB | DOI | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2710067Mokbel, B., Paaßen, B., and Hammer, B. (2014). “Efficient Adaptation of Structure Metrics in Prototype-Based Classification” in Artificial Neural Networks and Machine Learning - ICANN 2014 - 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014. Proceedings, Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., and Villa, A. eds. Lecture Notes in Computer Science, vol. 8681, (Springer), 571-578.PUB | PDF | DOI | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673545Nebel, D., Hammer, B., and Villmann, T. (2014). “Supervised Generative Models for Learning Dissimilarity Data” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 35-40.PUB
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673557Schulz, A., Gisbrecht, A., and Hammer, B. (2014). “Relevance learning for dimensionality reduction” in ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Verleysen, M. ed. (Bruges, Belgium: i6doc.com), 165-170.PUB
-
2014 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2900324Gisbrecht, A., Schulz, A., and Hammer, B. (2014). “Discriminative Dimensionality Reduction for the Visualization of Classifiers” in Pattern Recognition Applications and Methods Advances in Intelligent Systems and Computing, vol. 318, (Cham: Springer Science + Business Media), 39-56.PUB | DOI
-
2014 | Konferenzbeitrag | PUB-ID: 2909361Hammer, B., Nebel, D., Riedel, M., and Villmann, T. (2014). “Generative versus Discriminative Prototype Based Classification” in Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, {WSOM} 2014, Mittweida, Germany, July, 2-4, 2014 (Cham: Springer International Publishing), 123--132.PUB | DOI
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982105Schleif, F. - M., Zhu, X., and Hammer, B. (2013). “Sparse Prototype Representation by Core Sets” in Intelligent Data Engineering and Automated Learning – IDEAL 2013, Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., and Yao, X. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 302-309.PUB | DOI
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982104Strickert, M., Hammer, B., Villmann, T., and Biehl, M. (2013). “Regularization and improved interpretation of linear data mappings and adaptive distance measures” in 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (IEEE), 10-17.PUB | DOI
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982102Hofmann, D., Gisbrecht, A., and Hammer, B. (2013). “Efficient Approximations of Kernel Robust Soft LVQ” in Advances in Self-Organizing Maps, Estévez, P. A., Príncipe, J. C., and Zegers, P. eds. Advances in Intelligent Systems and Computing (Berlin, Heidelberg: Springer Berlin Heidelberg), 183-192.PUB | DOI
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982101Nebel, D., Hammer, B., and Villmann, T. (2013). “A Median Variant of Generalized Learning Vector Quantization” in Neural Information Processing, Lee, M., Hirose, A., Hou, Z. - G., and Kil, R. M. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 19-26.PUB | DOI
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2623500Gisbrecht, A., Hammer, B., Mokbel, B., and Sczyrba, A. (2013). “Nonlinear dimensionality reduction for cluster identification in metagenomic samples” in 17th International Conference on Information Visualisation IV 2013, Banissi, E. ed. (Piscataway, NJ: IEEE), 174-179.PUB | DOI
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625185Mokbel, B., Gross, S., Paaßen, B., Pinkwart, N., and Hammer, B. (2013). “Domain-Independent Proximity Measures in Intelligent Tutoring Systems” in Proceedings of the 6th International Conference on Educational Data Mining (EDM), D'Mello, S. K., Calvo, R. A., and Olney, A. eds. 334-335.PUB | Download (ext.)
-
2013 | Konferenzbeitrag | PUB-ID: 2909358Strickert, M., Hammer, B., Villmann, T., and Biehl, M. (2013). “Regularization and Improved Interpretation of Linear Data Mappings and Adaptive Distance Measures” in IEEE SSCI CIDM 2013 (IEEE Computational Intelligence Society), 10-17.PUB
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622456Schulz, A., Gisbrecht, A., and Hammer, B. (2013). “Using Nonlinear Dimensionality Reduction to Visualize Classifiers” in Advances in computational intelligence. Proceedings. Vol 1, Rojas, I., Joya, G., and Gabestany, J. eds. Lecture Notes in Computer Science, vol. 7902, (Springer), 59-68.PUB | DOI | WoS
-
-
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622467Schulz, A., Gisbrecht, A., and Hammer, B. (2013). “Classifier inspection based on different discriminative dimensionality reductions” in Workshop NC^2 2013 (TR Machine Learning Reports), 77-86.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625194Gisbrecht, A., Miche, Y., Hammer, B., and Lendasse, A. (2013). “Visualizing Dependencies of Spectral Features using Mutual Information” in ESANN, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 573-578.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625199Hofmann, D., and Hammer, B. (2013). “Sparse approximations for kernel learning vector quantization” in ESANN.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625202Schleif, F. - M., Zhu, X., and Hammer, B. (2013). “Sparse prototype representation by core sets” in IDEAL 2013, Hujun Yin, et.al ed.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625207Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2013). “Towards Providing Feedback to Students in Absence of Formalized Domain Models” in AIED 644-648.PUB
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615717Zhu, X., Schleif, F. - M., and Hammer, B. (2013). “Secure Semi-supervised Vector Quantization for Dissimilarity Data” in IWANN (1), Rojas, I., Joya, G., and Cabestany, J. eds. Lecture Notes in Computer Science, vol. 7902, (Springer), 347-356.PUB | DOI
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615701Zhu, X., Schleif, F. - M., and Hammer, B. (2013). “Semi-Supervised Vector Quantization for proximity data” in Proceedings of ESANN 2013 89-94.PUB
-
2013 | Konferenzbeitrag | PUB-ID: 2909359Nebel, D., Hammer, B., and Villmann, T. (2013). “A Median Variant of Generalized Learning Vector Quantization” in ICONIP (2) 19-26.PUB
-
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982106Gisbrecht, A., Hofmann, D., and Hammer, B. (2012). “Discriminative Dimensionality Reduction Mappings” in Advances in Intelligent Data Analysis XI, Hollmén, J., Klawonn, F., and Tucker, A. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 126-138.PUB | DOI
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982107Hofmann, D., and Hammer, B. (2012). “Kernel Robust Soft Learning Vector Quantization” in Artificial Neural Networks in Pattern Recognition, Mana, N., Schwenker, F., and Trentin, E. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 14-23.PUB | DOI
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2625232Gisbrecht, A., Mokbel, B., Schleif, F. - M., Zhu, X., and Hammer, B. (2012). Linear Time Relational Prototype Based Learning. International Journal of Neural Systems 22:1250021.PUB | DOI | WoS | PubMed | Europe PMC
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2622449Schulz, A., Gisbrecht, A., Bunte, K., and Hammer, B. (2012). “How to visualize a classifier?” in Proceedings of the Workshop - New Challenges in Neural Computation 2012 (Machine Learning Reports), 73-83.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625260Gisbrecht, A., Lueks, W., Mokbel, B., and Hammer, B. (2012). “Out-of-sample kernel extensions for nonparametric dimensionality reduction” in ESANN 2012 531-536.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625265Gisbrecht, A., Sovilj, D., Hammer, B., and Lendasse, A. (2012). “Relevance learning for time series inspection” in ESANN 2012, Verleysen, M. ed. 489-494.PUB
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2671172Hofmann, D., Gisbrecht, A., and Hammer, B. (2012). “Discriminative probabilistic prototype based models in kernel space” in Workshop NC^2 2012 (TR Machine Learning Reports).PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536426Mokbel, B., Gross, S., Lux, M., Pinkwart, N., and Hammer, B. (2012). “How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?” in Artificial Neural Networks in Pattern Recognition. 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012. Proceedings, Mana, N., Schwenker, F., and Trentin, E. eds. Lecture Notes in Artificial Intelligence, vol. 7477, (Springer Berlin Heidelberg), 1-13.PUB | PDF | DOI
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625238Hofmann, D., Gisbrecht, A., and Hammer, B. (2012). “Efficient Approximations of Kernel Robust Soft LVQ” in WSOM.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625271Bouveyron, C., Hammer, B., and Villmann, T. (2012). “Recent developments in clustering algorithms” in ESANN 2012, Verleysen, M. ed. 447-458.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625276Gisbrecht, A., Mokbel, B., and Hammer, B. (2012). “Linear Basis-Function t-SNE for Fast Nonlinear Dimensionality Reduction” in IJCNN.PUB
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625242Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2012). “Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces” in DeLFI 27-38.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625247Gisbrecht, A., Hofmann, D., and Hammer, B. (2012). “Discriminative Dimensionality Reduction Mappings” in Advances in Intelligent Data Analysis XI - 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings, Hollmén, J., Klawonn, F., and Tucker, A. eds. Lecture Notes in Computer Science, vol. 7619, (Springer), 126-138.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625254Hofmann, D., and Hammer, B. (2012). “Kernel Robust Soft Learning Vector Quantization” in Artificial Neural Networks in Pattern Recognition - 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012, Trento, Italy, September 17-19, 2012. Proceedings, Mana, N., Schwenker, F., and Trentin, E. eds. Lecture Notes in Computer Science, vol. 7477, (Springer), 14-23.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2615750Schleif, F. - M., Zhu, X., Gisbrecht, A., and Hammer, B. (2012). “Fast approximated relational and kernel clustering” in Proceedings of ICPR 2012 (IEEE), 1229-1232.PUB
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536437Gross, S., Zhu, X., Hammer, B., and Pinkwart, N. (2012). “Cluster based feedback provision strategies in intelligent tutoring systems” in Proceedings of the 11th international conference on Intelligent Tutoring Systems (Berlin, Heidelberg: Springer-Verlag), 699-700.PUB | PDF | DOI | Download (ext.)
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2536444Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N. (2012). “Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces” in DeLFI 2012: Die 10. e-Learning Fachtagung Informatik, Desel, J., Haake, J. M., Spannagel, C., and Gesellschaft für Informatik eds. GI-Edition : Proceedings, vol. 207, (Hagen, Germany: Köllen), 27-38.PUB | PDF
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2534877Schleif, F. - M., Mokbel, B., Gisbrecht, A., Theunissen, L., Dürr, V., and Hammer, B. (2012). “Learning Relevant Time Points for Time-Series Data in the Life Sciences” in ICANN (2) Lecture Notes in Computer Science, vol. 7553, (Berlin, Heidelberg: Springer Berlin Heidelberg), 531-539.PUB | DOI
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2489405Bunte, K., Schneider, P., Hammer, B., Schleif, F. - M., Villmann, T., and Biehl, M. (2012). Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks 26, 159-173.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2012 | Konferenzbeitrag | PUB-ID: 2909356Mokbel, B., Lueks, W., Gisbrecht, A., Biehl, M., and Hammer, B. (2012). “Visualizing the quality of dimensionality reduction” in ESANN 2012, Verleysen, M. ed. 179--184.PUB
-
-
-
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2534905Schleif, F. - M., Gisbrecht, A., and Hammer, B. (2012). “Relevance learning for short high-dimensional time series in the life sciences” in IJCNN, IEEE Computational Intelligence Society, and Institute of Electrical and Electronics Engineers eds. (Piscataway, NJ: IEEE), 1-8.PUB | DOI
-
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982113Hammer, B., Gisbrecht, A., Hasenfuss, A., Mokbel, B., Schleif, F. - M., and Zhu, X. (2011). “Topographic Mapping of Dissimilarity Data” in Advances in Self-Organizing Maps, Laaksonen, J., and Honkela, T. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 1-15.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982112Hammer, B., Schleif, F. - M., and Zhu, X. (2011). “Relational Extensions of Learning Vector Quantization” in Neural Information Processing, Lu, B. - L., Zhang, L., and Kwok, J. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 481-489.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982111Hammer, B., Mokbel, B., Schleif, F. - M., and Zhu, X. (2011). “Prototype-Based Classification of Dissimilarity Data” in Advances in Intelligent Data Analysis X, Gama, J., Bradley, E., and Hollmén, J. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 185-197.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982110Schleif, F. - M., Gisbrecht, A., and Hammer, B. (2011). “Accelerating Kernel Neural Gas” in Artificial Neural Networks and Machine Learning – ICANN 2011, Honkela, T., Duch, W., Girolami, M., and Kaski, S. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 150-158.PUB | DOI
-
2011 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982109Hammer, B., Biehl, M., Bunte, K., and Mokbel, B. (2011). “A General Framework for Dimensionality Reduction for Large Data Sets” in Advances in Self-Organizing Maps, Laaksonen, J., and Honkela, T. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 277-287.PUB | DOI
-
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276480Gisbrecht, A., Schleif, F. - M., Zhu, X., and Hammer, B. (2011). “Linear time heuristics for topographic mapping of dissimilarity data” in Intelligent Data Engineering and Automated Learning - IDEAL 2011: IDEAL 2011, 12th international conference, Norwich, UK, September 7 - 9, 2011 ; proceedings Lecture Notes in Computer Science, vol. 6936, (Berlin, Heidelberg: Springer), 25-33.PUB | DOI
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276485Hammer, B., Gisbrecht, A., Hasenfuss, A., Mokbel, B., Schleif, F. - M., and Zhu, X. (2011). “Topographic Mapping of Dissimilarity Data” in WSOM'11.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276492Schleif, F. - M., Gisbrecht, A., and Hammer, B. (2011). “Accelerating Kernel Neural Gas” in ICANN'2011, Kaski, S., Honkela, T., Gitolami, M., and Dutch, W. eds.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276500Kaestner, M., Hammer, B., Biehl, M., and Villmann, T. (2011). “Generalized Functional Relevance Learning Vector Quantization” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D side), pp. 93-98.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276512Hammer, B., Biehl, M., Bunte, K., and Mokbel, B. (2011). “A general framework for dimensionality reduction for large data sets” in WSOM'11.PUB
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276517Bunte, K., Biehl, M., and Hammer, B. (2011). “Supervised dimension reduction mappings” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D side), pp. 281-286.PUB
-
-
-
2011 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2309980Schleif, F. - M., Villmann, T., Hammer, B., and Schneider, P. (2011). Efficient Kernelized Prototype-based Classification. International Journal of Neural Systems 21, 443-457.PUB | DOI | WoS | PubMed | Europe PMC
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276522Gisbrecht, A., Hammer, B., Schleif, F. - M., and Zhu, X. (2011). “Accelerating dissimilarity clustering for biomedical data analysis” in IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology pp.154-161.PUB
-
-
2011 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2091665Zhu, X., and Hammer, B. (2011).“Patch Affinity Propagation”. Presented at the 19th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium.PUB
-
-
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982117Gisbrecht, A., Mokbel, B., Hasenfuss, A., and Hammer, B. (2010). “Visualizing Dissimilarity Data Using Generative Topographic Mapping” in KI 2010: Advances in Artificial Intelligence, Dillmann, R., Beyerer, J., Hanebeck, U. D., and Schultz, T. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 227-237.PUB | DOI
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982116Villmann, T., Haase, S., Schleif, F. - M., Hammer, B., and Biehl, M. (2010). “The Mathematics of Divergence Based Online Learning in Vector Quantization” in Artificial Neural Networks in Pattern Recognition, Schwenker, F., and El Gayar, N. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 108-119.PUB | DOI
-
2010 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982115Arnonkijpanich, B., and Hammer, B. (2010). “Global Coordination Based on Matrix Neural Gas for Dynamic Texture Synthesis” in Artificial Neural Networks in Pattern Recognition. 4th IAPR TC3 Workshop, ANNPR 2010, Cairo, Egypt, April 11-13, 2010. Proceedings, Schwenker, F., and El Gayar, N. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 84-95.PUB | DOI
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276543Gisbrecht, A., Mokbel, B., and Hammer, B. (2010). “The Nystrom approximation for relational generative topographic mappings” in NIPS workshop on challenges of Data Visualization.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994127Villmann, T., Haase, S., Schleif, F. - M., and Hammer, B. (2010). “Divergence Based Online Learning in Vector Quantization” in Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, 6113, Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L., and Zurada, J. eds. (Berlin, Heidelberg: Springer), 479-486.PUB | DOI
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1796018Arnonkijpanich, B., Hasenfuss, A., and Hammer, B. (2010). Local matrix learning in clustering and applications for manifold visualization. Neural Networks 23, 476-486.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993273Arnonkijpanich, B., and Hammer, B. (2010). “Global Coordination based on Matrix Neural Gas for Dynamic Texture Synthesis” in ANNPR'2010. Lecture Notes in Artificial Intelligence, 5998, El Gayar, N., and Schwenker, F. eds. (Springer), 84-95.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993367Bunte, K., Hammer, B., Villmann, T., Biehl, M., and Wismüller, A. (2010). “Exploratory Observation Machine (XOM) with Kullback-Leibler Divergence for Dimensionality Reduction and Visualization” in ESANN'10. Proceedings of the 18th European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Evere: D side), 87-92.PUB
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1929672Witoelar, A. W., Ghosh, A., de Vries, J. J. G., Hammer, B., and Biehl, M. (2010). Window-Based Example Selection in Learning Vector Quantization. Neural Computing 22, 2924-2961.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1794373Hammer, B., and Hasenfuss, A. (2010). Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22, 2229-2284.PUB | DOI | WoS | PubMed | Europe PMC
-
2010 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1795962Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., and Biehl, M. (2010). Regularization in Matrix Relevance Learning. IEEE Transactions on Neural Networks 21, 831-840.PUB | DOI | WoS | PubMed | Europe PMC
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993978Schleif, F. - M., Villmann, T., Hammer, B., Schneider, P., and Biehl, M. (2010). “Generalized derivative based Kernelized learning vector quantization” in Intelligent Data Engineering and Automated Learning – IDEAL 2010 11th International Conference, Paisley, UK, September 1-3, 2010. Proceedings, Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., and Yin, H. eds. (Berlin u.a.: Springer), 21-28.PUB | DOI
-
-
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993536Hammer, B., and Hasenfuss, A. (2010). “Clustering very large dissimilarity data sets” in Artificial Neural Networks in Pattern Recognition (ANNPR 2010). Proceedings, Schwenker, F., and El Gayar, N. eds. Lecture Notes in Artificial Intelligence, vol. 5998, (Berlin: Springer), 259-273.PUB | DOI
-
2010 | Konferenzband | Veröffentlicht | PUB-ID: 2276535Hammer, B., Hitzler, P., Maass, W., and Toussaint, M. eds. (2010). Learning paradigms in dynamic environments, 25.07.10-30.07.20. 10302, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2276547Mokbel, B., Gisbrecht, A., and Hammer, B. (2010). “On the effect of clustering on quality assessment measures for dimensionality reduction” in NIPS workshop on Challenges of Data Visualization.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993448Gisbrecht, A., and Hammer, B. (2010). “Relevance learning in generative topographic maps” in ESANN'10, Verleysen, M. ed. (Evere: D side), 387-392.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993452Gisbrecht, A., Mokbel, B., and Hammer, B. (2010). “Relational Generative Topographic Map” in ESANN'10, Verleysen, M. ed. (Evere: D side), 277-282.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993457Gisbrecht, A., Mokbel, B., Hasenfuss, A., and Hammer, B. (2010). “Visualizing Dissimilarity Data using generative topographic mapping” in KI'2010, Dillmann, R., Beyerer, J., Hanebeck, U. D., and Schulz, T. eds. 227-237.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994138Villmann, T., Haase, S., Schleif, F. - M., Hammer, B., and Biehl, M. (2010). “The Mathematics of Divergence Based Online Learning in Vector Quanitzation” in ANNPR'2010, El Gayar, N., and Schwenker, F. eds. (Berlin, Heidelberg: Springer), 108-119.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994227Villmann, T., Schleif, F. - M., and Hammer, B. (2010). “Sparse representation of data” in ESANN'10, Verleysen, M. ed. (D side), 225-234.PUB
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982118Villmann, T., and Hammer, B. (2009). “Functional Principal Component Learning Using Oja’s Method and Sobolev Norms” in Advances in Self-Organizing Maps. 7th International Workshop, WSOM 2009, St. Augustine, FL, USA, June 8-10, 2009. Proceedings, Príncipe, J. C., and Miikkulainen, R. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 325-333.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993679Hammer, B., Schrauwen, B., and Steil, J. J. (2009). “Recent advances in efficient learning of recurrent networks” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brugge: d-facto), 213-226.PUB
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993984Schleif, F. - M., Villmann, T., Kostrzewa, M., Hammer, B., and Gammerman, A. (2009). Cancer Informatics by Prototype-networks in Mass Spectrometry. Artificial Intelligence in Medicine 45, 215-228.PUB | DOI | WoS | PubMed | Europe PMC
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1994160Villmann, T., Hammer, B., and Biehl, M. (2009). “Some theoretical aspects of the neural gas vector quantizer” in Similarity Based Clustering, Biehl, M., Hammer, B., Verleysen, M., and Villmann, T. eds. Lecture Notes Artificial Intelligence, 5400 (Berlin, Heidelberg: Springer), 23-34.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994305Witolaer, A., Biehl, M., and Hammer, B. (2009). “Equilibrium properties of offline LVQ” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (d-side publications), 535-540.PUB
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993326Biehl, M., Hammer, B., Schneider, P., and Villmann, T. (2009). “Metric learning for prototype based classification” in Innovations in Neural Information – Paradigms and Applications, Bianchini, M., Maggini, M., and Scarselli, F. eds. Studies in Computational Intelligence, 247 (Berlin: Springer), 183-199.PUB | DOI
-
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993994Schneider, P., Biehl, M., and Hammer, B. (2009). “Hyperparameter Learning in robust soft LVQ” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (d-side publications), 517-522.PUB
-
2009 | Konferenzband | Veröffentlicht | PUB-ID: 1994310Biehl, M., Hammer, B., Hochreiter, S., Kremer, S. C., and Villmann, T. eds. (2009). Similarity-based learning on structures. 9081, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.PUB
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994008Schneider, P., Biehl, M., and Hammer, B. (2009). Distance learning in discriminative vector quantization. Neural Computation 21, 2942-2969.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2009 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993555Hammer, B., Hasenfuss, A., and Rossi, F. (2009). “Median topographic maps for biological data sets” in Similarity Based Clustering, Biehl, M., Hammer, B., Verleysen, M., and Villmann, T. eds. Lecture Notes Artificial Intelligence, 5400 (Berlin, Heidelberg: Springer), 92-117.PUB | DOI
-
2009 | Report | Veröffentlicht | PUB-ID: 1993316Biehl, M., Hammer, B., Schleif, F. - M., Schneider, P., and Villmann, T. (2009). Stationarity of Matrix Relevance Learning Vector Quantization. Machine Learning Reports, Leipzig: Universität Leipzig.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993361Bunte, K., Hammer, B., and Biehl, M. (2009). “Nonlinear dimension reduction and visualization of labeled data” in International Conference on Computer Analysis of Images and Patterns, Jiang, X., and Petkov, N. eds. Lecture Notes in Computer Science, 5702, vol. 5702, (Berlin: Springer), 1162-1170.PUB | DOI
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993429Geweniger, T., Zühlke, D., Hammer, B., and Villmann, T. (2009). “Median variant of fuzzy-c-means” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Evere: d-side publications), 523-528.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993835Mokbel, B., Hasenfuss, A., and Hammer, B. (2009). “Graph-based Representation of Symbolic Musical Data” in Graph-Based Representation in Pattern Recognition (GbRPR 2009). Lecture Notes in Computer Science, 5534, Torsello, A., Escolano, F., Brun, L., and International Association for Pattern Recognition. Technical Committee on Graph Based Representations eds. Lecture notes in computer science, vol. 5534, (Berlin: Springer), 42-51.PUB | DOI
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994004Schneider, P., Biehl, M., and Hammer, B. (2009). Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532-3561.PUB | DOI | WoS | PubMed | Europe PMC
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993356Bunte, K., Biehl, M., and Hammer, B. (2009). “Nonlinear discriminative data visualization” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Evere: d-side publications), 65-70.PUB
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994152Villmann, T., and Hammer, B. (2009). “Functional principal component learning using Oja's method and Sobolev norms” in Advances in Self-Organizing Maps, Principe, J. C., and Miikkulainen, R. eds. 325-333.PUB
-
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982119Arnonkijpanich, B., Hammer, B., Hasenfuss, A., and Lursinsap, C. (2008). “Matrix Learning for Topographic Neural Maps” in Artificial Neural Networks - ICANN 2008, Kůrková, V., Neruda, R., and Koutník, J. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 572-582.PUB | DOI
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993939Schleif, F. - M., Villmann, T., and Hammer, B. (2008). “Pattern Recognition by Supervised Relevance Neural Gas and its Application to Spectral Data in Bioinformatics” in Encyclopedia of Artificial Intelligence, Dopico, J. R. -n R. -al, Dorado, J., and Pazos, A. eds. (IGI Global), 1337-1342.PUB
-
2008 | Konferenzband | Veröffentlicht | PUB-ID: 1994329de Raedt, L., Hammer, B., Hitzler, P., and Maass, W. eds. (2008). Recurrent Neural Networks - Models, Capacities, and Applications. 8041, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI).PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993282Arnonkijpanich, B., Hammer, B., Hasenfuss, A., and Lursinsap, C. (2008). “Matrix Learning for Topographic Neural Maps” in ICANN (1). Lecture Notes in Computer Science, 5163, Kurková, V., Neruda, R., and Koutn'ık, J. eds. (Berlin: Springer), 572-582.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993261Alex, N., and Hammer, B. (2008). “Parallelizing single pass patch clustering” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Evere, Belgium: d-side publications), 227-232.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1993278Arnonkijpanich, B., Hammer, B., and Hasenfuss, A. (2008). Local Matrix Adaptation in Topographic Neural Maps. IfI-08-07, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1993379Bunte, K., Schneider, P., Hammer, B., Schleif, F. - M., Villmann, T., and Biehl, M. (2008). Discriminative Visualization by Limited Rank Matrix Learning. Machine Learning Reports, Leipzig: Universität Leipzig.PUB
-
2008 | Report | Veröffentlicht | PUB-ID: 1994012Schneider, P., Biehl, M., and Hammer, B. (2008). Matrix Adaptation in Discriminative Vector Quantization. IfI Technical Report Seriess, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993776Hasenfuss, A., Boerger, W., and Hammer, B. (2008). “Topographic processing of very large text datasets” in Smart Systems Engineering: Computational Intelligence in Architecting Systes (ANNIE 2008), Daglie, C. H. ed. (ASME Press), 525-532.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993788Hasenfuss, A., and Hammer, B. (2008). “Single Pass Clustering and Classification of Large Dissimilarity Datasets” in Artificial Intelligence and Pattern Recognition, Prasad, B., Sinha, P., Ram, A., and Kerre, E. E. eds. (ISRST), 219-223.PUB
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994072Strickert, M., Schneider, P., Keilwagen, J., Villmann, T., Biehl, M., and Hammer, B. (2008). “Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics” in Artificial Neural Networks in Pattern Recognition. Third IAPR Workshop. Proceedings, Prevost, L., Marinai, S., and Schwenker, F. eds. Lecture Notes in Computer Science, 5064 (Berlin: Springer), 78-89.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994089Strickert, M., Sreenivasulu, N., Villmann, T., and Hammer, B. (2008). “Robust Centroid-Based Clustering using Derivatives of Pearson Correlation” in BIOSIGNALS (2), Encarnação, P., and Veloso, A. eds. (INSTICC - Institute for Systems and Technologies of Information, Control and Communication), 197-203.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994281Winkler, T., Drieseberg, J., Hasenfuß, A., Hammer, B., and Hormann, K. (2008). “Thinning Mesh Animations” in Proceedings of Vision, Modeling, and Visualization 2008, Deussen, O., Keim, D., and Saupe, D. eds. (Konstanz, Germany: Aka), 149-158.PUB
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993804Hasenfuss, A., Hammer, B., and Rossi, F. (2008). “Patch Relational Neural Gas - Clustering of Huge Dissimilarity Datasets” in Artificial Neural Networks in Pattern Recognition, Third IAPR Workshop. Proceedings. Lecture Notes in Computer Science, 5064, Prevost, L., Marinai, S., and Schwenker, F. eds. (Berlin: Springer), 1-12.PUB | DOI
-
2008 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993900Schleif, F. - M., Hammer, B., and Villmann, T. (2008). “Analysis of Spectral Data in Clinical Proteomics by use of Learning Vector Quantizers” in Computational Intelligence in Biomedicine and Bioinformatics: Current Trends and Applications, Van de Werff, M., Delder, A., and Tollenaar, R. eds. (Berlin: Springer), 141-167.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993798Hasenfuss, A., Hammer, B., Geweniger, T., and Villmann, T. (2008). “Magnification Control in Relational Neural Gas” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brussels: d-side publications), 325-330.PUB
-
2008 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994253Villmann, T., Schleif, F. - M., Kostrzewa, M., Walch, A., and Hammer, B. (2008). Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics 9, 129-143.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2001836Geweniger, T., Schleif, F. - M., Hasenfuss, A., Hammer, B., and Villmann, T. (2008). “Comparison of cluster algorithms for the analysis of text data using Kolmogorov complexity” in ICONIP 2008, Köppen, M., Kasabov, N. K., and Coghill, G. G. eds. (Berlin, Heidelberg: Springer), 61-69.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993848Rossi, F., Hasenfuß, A., and Hammer, B. (2007). “Accelerating Relational Clustering Algorithms With Sparse Prototype Representation” in Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) (Bielefeld: Bielefeld University).PUB | PDF | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994016Schneider, P., Biehl, M., Schleif, F. - M., and Hammer, B. (2007). “Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data” in Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) (Bielefeld: Bielefeld University).PUB | PDF | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994267Villmann, T., Schleif, F. - M., Merenyi, E., Strickert, M., and Hammer, B. (2007). “Class imaging of hyperspectral satellite remote sensing data using FLSOM” in Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) (Bielefeld: Bielefeld University).PUB | PDF | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994295Witoelar, A., Biehl, M., and Hammer, B. (2007). “Learning Vector Quantization: generalization ability and dynamics of competing prototypes” in Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM 2007) (Bielefeld: Bielefeld University).PUB | PDF | DOI
-
-
-
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993782Hasenfuss, A., and Hammer, B. (2007). “Relational topographic maps” in Advances in Intelligent Data Analysis VII, Proceedings of the 7th International Symposium on Intelligent Data Analysis, Berthold, M. R., Shawe-Taylor, J., and Lavrac, N. eds., vol. 4723, (Berlin: Springer), 93-105.PUB | DOI
-
2007 | Report | Veröffentlicht | PUB-ID: 1993922Schleif, F. - M., Hasenfuss, A., and Hammer, B. (2007). Aggregation of multiple peak lists by use of an improved neural gas network. Leipzig: Universität Leipzig.PUB
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993297Biehl, M., Ghosh, A., and Hammer, B. (2007). Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research 8, 323-360.PUB
-
2007 | Report | Veröffentlicht | PUB-ID: 1993533Hammer, B., and Hasenfuss, A. (2007). Relational topographic Maps. IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Report | Veröffentlicht | PUB-ID: 1993831Melato, M., Hammer, B., and Hormann, K. (2007). Neural Gas for Surface Reconstruction. IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993970Schleif, F. - M., Villmann, T., and Hammer, B. (2007). “Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing-Maps” in Application of Fuzzy Sets Theory. Proceedings of the 7th International Workshop on Fuzzy Logic and Applications. LNAI 4578, Masulli, F., Mitra, S., and Pasi, G. eds. (Berlin, Heidelberg: Springer), 563-570.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993999Schneider, P., Biehl, M., and Hammer, B. (2007). “Relevance matrices in LVQ” in Proc. Of European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brussels, Belgium: d-side publications), 37-42.PUB
-
-
2007 | Report | Veröffentlicht | PUB-ID: 1993334Blazewicz, J., Ecker, K., and Hammer, B. (2007). ICOLE-2007, German-Polish Workshop on Computational Biology, Scheduling and Machine Learning. Lessach, Austria, 27.05.-02.06.2007. Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993746Hammer, B., and Villmann, T. (2007). “How to process uncertainty in machine learning” in Proc. Of European Symposium on Artificial Neural Networks (ESANN'2007), Verleysen, M. ed. (Brussels, Belgium: d-side publications), 79-90.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993811Hasenfuss, A., Hammer, B., Schleif, F. - M., and Villmann, T. (2007). “Neural gas clustering for dissimilarity data with continuous prototypes” in Computational and Ambient Intelligence – Proceedings of the 9th Work-conference on Artificial Neural Networks. LNCS 4507, Sandoval, F., Prieto, A., Cabestany, J., and Grana, M. eds. (Berlin: Springer), 539-546.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994299Witolaer, A., Biehl, M., Ghosh, A., and Hammer, B. (2007). “On the dynamics of vector quantization and neural gas” in Proc. Of European Symposium on Artificial Neural Networks (ESANN'2007), Verleysen, M. ed. (Brussels, Belgium: d-side publications), 127-132.PUB
-
2007 | Konferenzband | Veröffentlicht | PUB-ID: 1994321Biehl, M., Hammer, B., Verleysen, M., and Villmann, T. eds. (2007). Similarity-based Clustering and its Application to Medicine and Biology. 7131, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI).PUB
-
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993541Hammer, B., and Hasenfuss, A. (2007). “Relational Neural Gas” in KI 2007: Advances in Artificial Intelligence. Lecture Notes in Artificial Intelligence, 4667, Hertzberg, J., Beetz, M., and Englert, R. eds. (Berlin: Springer), 190-204.PUB | DOI
-
-
2007 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993630Hammer, B., Micheli, A., and Sperduti, A. (2007). “Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties” in Perspectives of Neural-Symbolic Integration, Hammer, B., and Hitzler, P. eds. Studies in computational Intelligence, 77 (Berlin: Springer), 67-94.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993820Hasenfuss, A., Hammer, B., Schleif, F. - M., and Villmann, T. (2007). “Neural gas clustering for sparse proximity data” in Proceedings of the 9th International Work-Conference on Artificial Neural Networks.LNCS 4507, Sandoval, F., Prieto, A., Cabestany, J., and Grana, M. eds. (Berlin, Heidelberg, Germany: Springer), 539-546.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993907Schleif, F. - M., Hammer, B., and Villmann, T. (2007). “Supervised Neural Gas for Functional Data and its Application to the Analysis of Clinical Proteom Spectra” in Computational and Ambient Intelligence. Proceedings of the 9th International Work-Conference on Artificial Neural Networks. LNCS, 4507, Sandoval, F., Prieto, A., Cabestany, J., and Grana, M. eds. (Berlin, Heidelberg: Springer), 1036-1044.PUB | DOI
-
2007 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1994102Tino, P., Hammer, B., and Boden, M. (2007). “Markovian Bias of Neural-based Architectures With Feedback Connections” in Perspectives of Neural-Symbolic Integration, Hammer, B., and Hitzler, P. eds. Studies in computational Intelligence, 77 (Berlin: Springer), 95-134.PUB | DOI
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994258Villmann, T., Schleif, F. - M., Merenyi, E., and Hammer, B. (2007). “Fuzzy Labeled Self Organizing Map for Clasification of Spectra” in Computational and Ambient Intelligence. Proceedings of the 9th Work-conference on Artificial Neural Networks. LNCS, 4507, Sandoval, F., Prieto, A., Cabestany, J., and Grana, M. eds. (Berlin: Springer), 556-563.PUB | DOI
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993578Hammer, B., Hasenfuss, A., Schleif, F. - M., and Villmann, T. (2006). “Supervised Batch Neural Gas” in Proceedings of Conference Artificial Neural Networks in Pattern Recognition (ANNPR), Schwenker, F. ed. (Berlin: Springer Verlag), 33-45.PUB | DOI
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993895Schleif, F. - M., Hammer, B., and Villmann, T. (2006). “Margin based Active Learning for LVQ Networks” in Proc. Of European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brussels, Belgium: d-side publications), 539-544.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994184Villmann, T., Hammer, B., Schleif, F. - M., Geweniger, T., Fischer, T., and Cottrell, M. (2006). “Prototype based classification using information theoretic learning” in Neural Information Processing, 13th International Conference. Proceedings, King, I., Wang, J., Chan, L., and Wang, D. L. L. eds. Lecture Notes in Computer Science, 4233, vol. Part II, (Berlin: Springer), 40-49.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994273Villmann, T., Seiffert, U., Schleif, F. - M., Brüß, C., Geweniger, T., and Hammer, B. (2006). “Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes” in Proceedings of Conference Artificial Neural Networks in Pattern Recognition, Schwenker, F. ed. (Berlin: Springer), 46-56.PUB | DOI
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993889Schleif, F. - M., Elssner, T., Kostrzewa, M., Villmann, T., and Hammer, B. (2006). “Machine Learning and Soft-Computing in Bioinformatics. A Short Journey” in Proc. of FLINS 2006 (World Scientific Press), 541-548.PUB
-
2006 | Report | Veröffentlicht | PUB-ID: 1993322Biehl, M., Hammer, B., and Schneider, P. (2006). Matrix Learning in Learning Vector Quantization. Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993391Cottrell, M., Hammer, B., Hasenfuss, A., and Villmann, T. (2006). Batch and Median Neural Gas. Neural Networks 19, 762-771.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993568Hammer, B., Hasenfuss, A., Schleif, F. - M., and Villmann, T. (2006). “Supervised median neural gas” in Smart Engineering System Design. Intelligent Engineering Systems Through Artificial Neural Networks, 16, Dagli, C., Buczak, A., Enke, D., Embrechts, A., and Ersoy, O. eds. (ASME Press), 623-633.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993594Hammer, B., Hasenfuss, A., Schleif, F. - M., and Villmann, T. (2006). “Supervised median clustering” in Smart systems engineering : infra-structure systems engineering, bio-informatics and computational biology and evolutionary computation : proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2006), Dagli, C. H. ed. ASME Press series on intelligent engineering systems through artificial neural networks, 16 (New York, NY: ASME Press), 623-632.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993878Schleif, F. - M., Elssner, T., Kostrzewa, M., Villmann, T., and Hammer, B. (2006). “Analysis and Visualization of Proteomic Data by Fuzzy labeled Self-Organizing Maps” in 19th IEEE International Symposium on Computer- based Medical Systems, Lee, D. J., Nutter, B., Antani, S., Mitra, S., and Archibald, J. eds. (Los Alamitos: IEEE Computer Society Press), 919-924.PUB | DOI
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994028Seiffert, U., Hammer, B., Kaski, S., and Villmann, T. (2006). “Neural Networks and Machine Learning in Bioinformatics - Theory and Applications” in Proc. Of European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brussels, Belgium: d-side publications), 521-532.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994201Villmann, T., Hammer, B., and Seiffert, U. (2006). “Perspectives of Self-adapted Self-organizing Clustering in Organic Computing” in Biologically Inspired Approaches to Advanced Information Technology, Second International Workshop. Proceedings. Lecture Notes in Computer Science, 3853, Ijspeert, A. J., Masuzawa, T., and Kusumoto, S. eds. (Berlin: Springer), 141-159.PUB | DOI
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994237Villmann, T., Schleif, F. - M., and Hammer, B. (2006). Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19, 610-622.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993440Ghosh, A., Biehl, M., and Hammer, B. (2006). Performance analysis of LVQ algorithms: a statistical physics approach. Neural Networks 19, 817-829.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Report | Veröffentlicht | PUB-ID: 1993584Hammer, B., Hasenfuss, A., Schleif, F. - M., and Villmann, T. (2006). Supervised median clustering. IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993611Hammer, B., Hasenfuss, A., and Villmann, T. (2006). “Magnification Control for Batch Neural Gas” in Proc. Of European Symposium on Artificial Neural Networks, Verleysen, M. ed. (Brussels: d-side publications), 7-12.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993659Hammer, B., and Neubauer, N. (2006). “On the capacity of unsupervised recursive neural networks for symbol processing” in Workshop proceedings of NeSy'06, d'Avila Garcez, A., Hitzler, P., and Tamburrini, G. eds.PUB
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993762Hammer, B., and Villmann, T. (2006). Effizient Klassifizieren und Clustern: Lernparadigmen von Vektorquantisierern. Künstliche Intelligenz 3, 5-11.PUB
-
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994195Villmann, T., Hammer, B., Schleif, F. - M., Geweniger, T., and Herrmann, W. (2006). Fuzzy Classification by Fuzzy Labeled Neural Gas. Neural Networks 19, 772-779.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2017225Hammer, B., Villmann, T., Schleif, F. - M., Albani, C., and Hermann, W. (2006). “Learning vector quantization classification with local relevance determination for medical data” in Artificial Intelligence and Soft-Computing - Proceedings of ICAISC 2006. LNAI, 4029, Rutkowski, L., Tadeusiewicz, R., Zadeh, L. A., and Zurada, J. eds. Lecture notes in computer science ; 4029 : Lecture notes in artificial intelligence, vol. 4029, (Berlin, Heidelberg: Springer), 603-612.PUB | DOI
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993624Hammer, B., Micheli, A., Neubauer, N., Sperduti, A., and Strickert, M. (2005). “Self Organizing Maps for Time Series” in Proceedings of WSOM 2005 115-122.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994172Villmann, T., Hammer, B., Schleif, F. - M., and Geweniger, T. (2005). “Fuzzy Labeled Neural GAS for Fuzzy Classification” in Proceedings of the 5th Workshop on Self-Organizing Maps [on CD-ROM], Cottrell, M. ed. (Paris, France: University Paris-1-Pantheon-Sorbonne), 283-290.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993305Biehl, M., Gosh, A., and Hammer, B. (2005). “The dynamics of Learning Vector Quantization” in ESANN'05, Verleysen, M. ed. (Evere: d-side publishing), 13-18.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993386Cottrell, M., Hammer, B., Hasenfuss, A., and Villmann, T. (2005). “Batch NG” in Proceedings of WSOM 2005 275-282.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993444Ghosh, A., Biehl, M., and Hammer, B. (2005). “Dynamical Analysis of LVQ type learning rules” in Proceedings of WSOM 578-594.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993665Hammer, B., Rechtien, A., Strickert, M., and Villmann, V. (2005). “Relevance learning for mental disease classification” in ESANN'05, Verleysen, M. ed. (d-side publishing), 139-144.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994118Tluk von Toschanowitz, K., Hammer, B., and Ritter, H. (2005). “Relevance determination in reinforcement learning” in ESANN'05, Verleysen, M. ed. (d-side publishing), 369-374.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994219Villmann, T., Schleif, F. - M., and Hammer, B. (2005). “Fuzzy Classification for Classification of Mass Spectrometric Data Based on Learning Vector Quantization” in International Workshop on Integrative Bioinformatics.PUB
-
-
-
2005 | Report | Veröffentlicht | PUB-ID: 1993675Hammer, B., Schleif, F. - M., and Villmann, T. (2005). On the Generalization Ability of Prototype-Based Classifiers with Local Relevance Determination. IfI Technical reports, Clausthal-Zellerfeld: Clausthal University of Technology.PUB
-
-
2005 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993671Hammer, B., Saunders, C., and Sperduti, A. (2005). Special issue on neural networks and kernel methods for structured domains. Neural Networks 18, 1015-1018.PUB | DOI | WoS | PubMed | Europe PMC
-
2005 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993710Hammer, B., Strickert, M., and Villmann, T. (2005). “Prototype based recognition of splice sites” in Bioinformatics using computational intelligence paradigms, Seiffert, U., Jain, L. C., and Schweitzer, P. eds. (Berlin: Springer), 25-55.PUB
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993974Schleif, F. - M., Villmann, T., and Hammer, B. (2005). “Local Metric Adaptation for Soft Nearest Prototype Classification to Classify Proteomic Data” in Proceedings of the 6th Workshop on Fuzzy Logic and Applications, Bloch, I., Petrosino, A., and Tettamanzi, A. G. B. eds. (Berlin, Heidelberg: Springer), 290-296.PUB | DOI
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994249Villmann, T., Schleif, F. - M., and Hammer, B. (2005). “Fuzzy labeled soft nearest neighbor classification with relevance learning” in Proceedings of the International Conference of Machine Learning Applications, Wani, M. A., Cios, K. J., and Hafeez, K. eds. (Los Angeles: IEEE Press), 11-15.PUB
-
-
2005 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993750Hammer, B., and Villmann, T. (2005). “Classification using non standard metrics” in ESANN'05, Verleysen, M. ed. (Brussels: d-side publishing), 303-316.PUB
-
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982121Gersmann, K., and Hammer, B. (2004). “A reinforcement learning algorithm to improve scheduling search heuristics with the SVM” in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), vol. 3, (IEEE), 1811-1816.PUB | DOI
-
2004 | Report | Veröffentlicht | PUB-ID: 1993732Hammer, B., Tino, P., and Micheli, A. (2004). A mathematical characterization of the architectural bias of recursive models. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994168Villmann, T., Hammer, B., and Schleif, F. - M. (2004). “Metrik Adaptation for Optimal Feature Classification in Learning Vector Quantization Applied to Environment Detection” in Proceedings of Selbstorganisation Von Adaptivem Verfahren. Fortschritts-Berichte VDI Reihe 10, Nr. 742, Groß, H. - M., Debes, K., and Böhme, H. - J. eds. (VDI Verlag), 592-597.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994111Tluk von Toschanowitz, K., Hammer, B., and Ritter, H. (2004). “Mapping the Design Space of Reinforcement Learning Problems - a Case Study” in SOAVE 2004, 3rd Workshop on SelfOrganization of AdaptiVE Behavior, Gross, H. - M., Debes, K., and Böhme, H. - J. eds. (VDI Verlag), 251-261.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994212Villmann, T., Schleif, F. - M., and Hammer, B. (2004). “Metric adaptation for optimal feature classification in learning vector quantization applied to environment detection” in SOAVE 2004, 3rd Workshop on SelfOrganization of AdaptiVE Behavior, Groß, H. - M., Debes, K., and Böhme, H. - J. eds. (VDI Verlag).PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993620Hammer, B., and Jain, B. J. (2004). “Neural methods for non-standard data” in European Symposium on Artificial Neural Networks'2004, Verleysen, M. ed. (D-side publications), 281-292.PUB
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993649Hammer, B., Micheli, A., Sperduti, A., and Strickert, M. (2004). Recursive self-organizing network models. Neural Networks 17, 1061-1085.PUB | DOI | WoS | PubMed | Europe PMC
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993702Hammer, B., Strickert, M., and Villmann, T. (2004). “Relevance LVQ versus SVM” in Artificial Intelligence and Softcomputing, Lecture Notes in Artificial Intelligence, 3070, Rutkowski, L., Siekmann, J., Tadeusiewicz, R., and Zadeh, L. A. eds. (Berlin: Springer), 592-597.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993419Gersmann, K., and Hammer, B. (2004). “A reinforcement learning algorithm to improve scheduling search heuristics with the SVM” in IJCNN.PUB
-
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993870Schleif, F. - M., Clauss, U., Villmann, T., and Hammer, B. (2004). “Supervised Relevance Neural Gas and Unified Maximum Separability Analysis for Classification of Mass Spectrometric Data” in Proceedings of the 3rd International Conference on Machine Learning and Applications (ICMLA) 2004, Wani, M. A., Cios, K. J., and Hafeez, K. eds. (Los Alamitos, CA, USA: IEEE Press), 374-379.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994049Strickert, M., and Hammer, B. (2004). “Self-organizing context learning” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D-side publications), 39-44.PUB
-
2004 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994099Tino, P., and Hammer, B. (2004). “On early stages of learning in connectionist models with feedback connections” in Compositional Connectionism in Cognitive Science.PUB
-
-
-
-
-
2003 | Report | Veröffentlicht | PUB-ID: 1993725Hammer, B., Strickert, M., and Villmann, T. (2003). On the generalization ability of GRLVQ. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994108Tiño, P., and Hammer, B. (2003). Architectural Bias in Recurrent Neural Networks: Fractal Analysis. Neural Computation 15, 1931-1957.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994223Villmann, T., Schleif, F. - M., and Hammer, B. (2003). “Supervised Neural Gas and Relevance Learning in Learning Vector Quantization” in Proceedings of the 4th Workshop on Self Organizing Maps [on CD-ROM], Yamakawa, T. ed. (Hibikino, Kitakyushu, Japan: Kyushu Institute of Technology), 47-52.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993338Bojer, T., Hammer, B., and Koeers, C. (2003). “Monitoring technical systems with prototype based clustering” in ESANN 2003, 10th European Symposium on Artificial Neural Network. Proceedings, Verleysen, M. ed. (Evere: D-side publication), 433-439.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993530Hammer, B., and Gersmann, K. (2003). A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters 17, 43-53.PUB
-
2003 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993487Hammer, B. (2003). “Perspectives on learning symbolic data with connectionistic systems” in Adaptivity and Learning, Kühn, R., Menzel, R., Menzel, W., Ratsch, U., Richter, M. M., and Stamatescu, I. eds. (Berlin: Springer), 141-160.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993754Hammer, B., and Villmann, T. (2003). “Mathematical Aspects of Neural Networks” in Proc. Of European Symposium on Artificial Neural Networks (ESANN'2003), Verleysen, M. ed. (Brussels, Belgium: d-side), 59-72.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994053Strickert, M., and Hammer, B. (2003). “Unsupervised recursive sequence processing” in 10th European Symposium on Artificial Neural Networks. Proceedings, Verleysen, M. ed. (D-side publication), 27-32.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994060Strickert, M., and Hammer, B. (2003). “Neural Gas for Sequences” in WSOM'03 53-57.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993412Gersmann, K., and Hammer, B. (2003). “Improving iterative repair strategies for scheduling with the SVM” in ESANN 2003, 10th European Symposium on Artificial Neural Networks. Proceedings, Verleysen, M. ed. (Evere: D-side publication), 235-240.PUB
-
2003 | Report | Veröffentlicht | PUB-ID: 1993645Hammer, B., Micheli, a., and Sperduti, A. (2003). A general framework for self-organizing structure processing neural networks. Pisa: Universita di Pisa, Dipartimento die Informatica.PUB
-
2003 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993349Bojer, T., Hammer, B., Strickert, M., and Villmann, T. (2003). “Determining Relevant Input Dimensions for the Self-Organizing Map” in Neural Networks and Soft Computing (Proc. ICNNSC 2002), Rutkowski, L., and Kacprzyk, J. eds. (Physica-Verlag), 388-393.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993736Hammer, B., and Tiño, P. (2003). Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Computation 15, 1897-1929.PUB
-
2003 | Report | Veröffentlicht | PUB-ID: 1994157Villmann, T., and Hammer, B. (2003). Metric adaptation and relevance learning in learning vector quantization. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2003 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994208Villmann, T., Merényi, E., and Hammer, B. (2003). Neural maps in remote sensing image analysis. Neural Networks 16, 389-403.PUB
-
-
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993636Hammer, B., Micheli, A., and Sperduti, A. (2002). “A general framework for unsupervised processing of structured data” in ESANN 2002, 10th European Symposium on Artificial Neural Network. Proceedings, Verleysen, M. ed. (De-side publication), 389-394.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994095Tino, P., and Hammer, B. (2002). “Architectural bias in recurrent neural networks – fractal analysis” in Proc. International Conf. on Artificial Neural Networks. Lecture Notes in Computer Science, 2415, Dorronsoro, J. R. ed. (Berlin: Springer), 370-376.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994146Villmann, T., and Hammer, B. (2002). “Supervised Neural Gas for Learning Vector Quantization” in Proc. of the 5th German Workshop on Artificial Life, Polani, D., Kim, J., and Martinetz, T. eds. (Berlin: Akademische Verlagsgesellschaft - infix - IOS Press), 9-16.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993688Hammer, B., and Steil, J. J. (2002). “Perspectives on Learning with Recurrent Neural Networks” in Proc. European Symposium Artificial Neural Networks, Verleysen, M. ed. (D-side publication), 357-368.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993758Hammer, B., and Villmann, T. (2002). “Batch-GRLVQ” in Proc. Of European Symposium on Artificial Neural Networks (ESANN'2002), Verleysen, M. ed. (Brussels, Belgium: d-side), 295-300.PUB
-
2002 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993765Hammer, B., and Villmann, T. (2002). Generalized Relevance Learning Vector Quantization. Neural Networks 15, 1059-1068.PUB
-
2002 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 1993471Hammer, B. (2002). “Compositionality in Neural Systems” in Handbook of Brain Theory and Neural Networks, Arbib, M. ed. 2nd. (MIT Press), 244-248.PUB
-
2002 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993508Hammer, B. (2002). Recurrent neural networks for structured data – a unifying approach and its properties. Cognitive Systems Research 3, 145-165.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993692Hammer, B., Strickert, M., and Villmann, T. (2002). “Learning Vector Quantization for Multimodal Data” in Proc. International Conf. on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 2415, Dorronsoro, J. R. ed. (Berlin: Springer Verlag), 370-376.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993697Hammer, B., Strickert, M., and Villmann, T. (2002). “Rule Extraction from Self-Organizing Networks” in Proc. International Conf. on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 2415, Dorronsoro, J. R. ed. (Berlin: Springer Verlag), 877-883.PUB
-
2002 | Report | Veröffentlicht | PUB-ID: 1993729Hammer, B., and Tino, P. (2002). Neural networks with small weights implement finite memory machines. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982130Hammer, B. (2001). “On the Generalization Ability of Recurrent Networks” in Artificial Neural Networks — ICANN 2001, Dorffner, G., Bischof, H., and Hornik, K. eds. Lecture Notes in Computer Science, vol. 2130, (Berlin, Heidelberg: Springer Berlin Heidelberg), 731-736.PUB | DOI
-
2001 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982129Strickert, M., Bojer, T., and Hammer, B. (2001). “Generalized Relevance LVQ for Time Series” in Artificial Neural Networks — ICANN 2001, Dorffner, G., Bischof, H., and Hornik, K. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 677-683.PUB | DOI
-
-
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993768Hammer, B., and Villmann, T. (2001). “Input Pruning for Neural Gas Architectures” in Proc. Of European Symposium on Artificial Neural Networks (ESANN'2001) (Brussels, Belgium: D facto publications), 283-288.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993343Bojer, T., Hammer, B., Schunk, D., and Tluk von Toschanowitz, K. (2001). “Relevance determination in learning vector quantization” in ESANN'2001, Verleysen, M. ed. (D-facto publications), 271-276.PUB
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1994123Vidyasagar, M., Balaji, S., and Hammer, B. (2001). Closure properties of uniform convergence of empirical means and PAC learnability under a family of probability measures. System and Control Letters 42, 151-157.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993474Hammer, B. (2001). “On the Generalization Ability of Recurrent Networks” in Artificial Neural Networks. Proceedings. Lecture Notes in Computer Science, 2130, Dorffner, G., Bischof, H., and Hornik, K. eds. (Berlin: Springer), 731-736.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993739Hammer, B., and Villmann, T. (2001). “Estimating Relevant Input Dimensions for Self-Organizing Algorithms” in Advances in Self-Organising Maps, Allinson, N. M., Yin, H., Allinson, L., and Slack, J. eds. (London: Springer), 173-180.PUB
-
2001 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1994042Strickert, M., Bojer, T., and Hammer, B. (2001). “Generalized Relevance LVQ for Time Series” in Artificial Neural Networks. International Conference. Proceedings. Lecture Notes in Computer Science, 2130, Dorffner, G., Bischof, H., and Hornik, K. eds. (Berlin: Springer), 677-683.PUB
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993510Hammer, B. (2001). Generalization Ability of Folding Networks. IEEE Trans. Knowl. Data Eng. 13, 196-206.PUB
-
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993499Hammer, B. (2000). “Limitations of hybrid systems” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D-facto publications), 213-218.PUB
-
2000 | Monographie | Veröffentlicht | PUB-ID: 1993514Hammer, B. (2000). Learning with Recurrent Neural Networks. Lecture Notes in Control and Information Sciences, 254, Berlin: Springer.PUB
-
2000 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993512Hammer, B. (2000). On the approximation capability of recurrent neural networks. Neurocomputing 31, 107-123.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993400DasGupta, B., and Hammer, B. (2000). “On Approximate Learning by Multi-layered Feedforward Circuits.” in Algorithmic Learning Theory, 11th International Conference. Proceedings. Lecture Notes in Computer Science, 1968, Arimura, H., Jain, S., and Sharma, A. eds. (Berlin: Springer), 264-278.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993479Hammer, B. (2000). “Approximation and generalization issues of recurrent networks dealing with structured data” in ECAI workshop: Foundations of connectionist-symbolic integration: representation, paradigms, and algorithms, Frasconi, P., Sperduti, A., and Gori, M. eds.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993495Hammer, B. (2000). “Neural networks classifying symbolic data” in ICML workshop on attribute-value and relational learning: crossing the boundaries, de Raedt, L., and Kramer, S. eds. 61-65.PUB
-
-
-
1999 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1993516Hammer, B. (1999). On the learnability of recursive data. Mathematics of Control, Signals and Systems 12, 62-79.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993502Hammer, B. (1999). “Approximation capabilities of folding networks” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D-facto publications), 33-38.PUB
-
1999 | Report | Veröffentlicht | PUB-ID: 1993409DasGupta, B., and Hammer, B. (1999). Hardness of approximation of the loading problem for multi-layered feedforward neural networks. DIMACS Center, Rutgers University.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993484Hammer, B. (1998). “On the Approximation Capability of Recurrent Neural Networks” in Proceedings of the International ICSC / IFAC Symposium on Neural Computation (NC 1998), Heiss, M. ed. (ICSC Academic Press), 512-518.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993505Hammer, B. (1998). “Training a sigmoidal network is difficult” in European Symposium on Artificial Neural Networks, Verleysen, M. ed. (D-facto publications), 255-260.PUB
-
1998 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993518Hammer, B. (1998). “Some complexity results for perceptron networks” in International Conference on artificial Neural Networks 639-644.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993526Hammer, B. (1997). “Generalization of Elman Networks” in Artificial Neural Networks - ICANN '97, 7th International Conference. Proceedings. Lecture Notes in Computer Science, 1327 (Berlin: Springer), 409-414.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1993684Hammer, B., and Sperschneider, V. (1997). “Neural networks can approximate mappings on structured objects” in International conference on Computational Intelligence and Neural Networks, Wang, P. P. ed. 211-214.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993524Hammer, B. (1997). On the generalization ability of simple recurrent neural networks. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993520Hammer, B. (1997). Learning recursive data is intractable. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1997 | Report | Veröffentlicht | PUB-ID: 1993522Hammer, B. (1997). A NP-hardness result for a sigmoidal 3-node neural network. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1996 | Report | Veröffentlicht | PUB-ID: 1993528Hammer, B. (1996). Universal approximation of mappings on structured objects using the folding architecture. Osnabrücker Schriften zur Mathematik, Osnabrück: Universität Osnabrück.PUB
-
1996 | Monographie | Veröffentlicht | PUB-ID: 1994039Sperschneider, V., and Hammer, B. (1996). Theoretische Informatik. Eine problemorientierte Einführung. erlin: Springer.PUB