iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams
Muschalik M, Fumagalli F, Hammer B, Hüllermeier E (2023)
In: Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Koutra D, Plant C, Gomez Rodriguez M, Baralis E, Bonchi F (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 428-445.
Sammelwerksbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herausgeber*in
Koutra, Danai;
Plant, Claudia;
Gomez Rodriguez, Manuel;
Baralis, Elena;
Bonchi, Francesco
Einrichtung
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Technische Fakultät > AG Machine Learning
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Technische Fakultät > AG Machine Learning
Projekt
Abstract / Bemerkung
Existing methods for explainable artificial intelligence (XAI), including popular feature importance measures such as SAGE, are mostly restricted to the batch learning scenario. However, machine learning is often applied in dynamic environments, where data arrives continuously and learning must be done in an online manner. Therefore, we propose iSAGE, a time- and memory-efficient incrementalization of SAGE, which is able to react to changes in the model as well as to drift in the data-generating process. We further provide efficient feature removal methods that break (interventional) and retain (observational) feature dependencies. Moreover, we formally analyze our explanation method to show that iSAGE adheres to similar theoretical properties as SAGE. Finally, we evaluate our approach in a thorough experimental analysis based on well-established data sets and data streams with concept drift.
Erscheinungsjahr
2023
Buchtitel
Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III
Serientitel
Lecture Notes in Computer Science
Seite(n)
428-445
ISBN
978-3-031-43417-4
eISBN
978-3-031-43418-1
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2983943
Zitieren
Muschalik M, Fumagalli F, Hammer B, Hüllermeier E. iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. In: Koutra D, Plant C, Gomez Rodriguez M, Baralis E, Bonchi F, eds. Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland; 2023: 428-445.
Muschalik, M., Fumagalli, F., Hammer, B., & Hüllermeier, E. (2023). iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Lecture Notes in Computer Science. Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III (pp. 428-445). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43418-1_26
Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. 2023. “iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams”. In Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III, ed. Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi, 428-445. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland.
Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2023). “iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams” in Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III, Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., and Bonchi, F. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 428-445.
Muschalik, M., et al., 2023. iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. In D. Koutra, et al., eds. Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 428-445.
M. Muschalik, et al., “iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams”, Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III, D. Koutra, et al., eds., Lecture Notes in Computer Science, Cham: Springer Nature Switzerland, 2023, pp.428-445.
Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., and Bonchi, F. (eds.) Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Lecture Notes in Computer Science. p. 428-445. Springer Nature Switzerland, Cham (2023).
Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. “iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams”. Machine Learning and Knowledge Discovery in Databases: Research Track. European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III. Ed. Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and Francesco Bonchi. Cham: Springer Nature Switzerland, 2023. Lecture Notes in Computer Science. 428-445.