Confident Kernel Sparse Coding and Dictionary Learning

Hosseini B, Hammer B (In Press)
In: 2018 IEEE International Conference on Data Mining (ICDM).

Konferenzbeitrag | Im Druck | Englisch
 
Download
OA 4.48 MB
Abstract / Bemerkung
In recent years, kernel-based sparse coding (K-SRC) has received a special attention due to its efficient representation of nonlinear data structures in the feature space. Nevertheless, the existing K-SRC methods suffer from the lack of consistency between their training and test optimization frameworks. In this work, we propose a novel confident K-SRC and dictionary learning algorithm (CKSC) which focuses on the discriminative reconstruction of the data based on its representation in the kernel space. CKSC focuses on reconstructing each data sample via weighted contributions which are confident in its corresponding class of data. We employ novel discriminative terms to apply this scheme to both training and test frameworks in our algorithm. This increases the consistency of these optimization frameworks and improves the discriminative performance in the recall phase. In addition, CKSC directly employs the supervised information in its dictionary learning framework to enhance the discriminative structure of the dictionary. For empirical evaluations, we implement our CKSC algorithm on multivariate time-series benchmarks such as DynTex++ and UTKinect. Our claims regarding the superior performance of the proposed algorithm are justified throughout comparing its classification results to the state-of-the-art K-SRC algorithms.
Stichworte
Discriminative dictionary learning; Kernel sparse coding; Non-negative reconstruction.
Erscheinungsjahr
2018
Titel des Konferenzbandes
2018 IEEE International Conference on Data Mining (ICDM)
Konferenz
2018 IEEE International Conference on Data Mining (ICDM)
Konferenzort
Singapore
Konferenzdatum
2018-11-17 – 2018-11-20
Page URI
https://pub.uni-bielefeld.de/record/2932116

Zitieren

Hosseini B, Hammer B. Confident Kernel Sparse Coding and Dictionary Learning. In: 2018 IEEE International Conference on Data Mining (ICDM). In Press.
Hosseini, B., & Hammer, B. (In Press). Confident Kernel Sparse Coding and Dictionary Learning. 2018 IEEE International Conference on Data Mining (ICDM)
Hosseini, Babak, and Hammer, Barbara. In Press. “Confident Kernel Sparse Coding and Dictionary Learning”. In 2018 IEEE International Conference on Data Mining (ICDM).
Hosseini, B., and Hammer, B. (In Press). “Confident Kernel Sparse Coding and Dictionary Learning” in 2018 IEEE International Conference on Data Mining (ICDM).
Hosseini, B., & Hammer, B., In Press. Confident Kernel Sparse Coding and Dictionary Learning. In 2018 IEEE International Conference on Data Mining (ICDM).
B. Hosseini and B. Hammer, “Confident Kernel Sparse Coding and Dictionary Learning”, 2018 IEEE International Conference on Data Mining (ICDM), In Press.
Hosseini, B., Hammer, B.: Confident Kernel Sparse Coding and Dictionary Learning. 2018 IEEE International Conference on Data Mining (ICDM). (In Press).
Hosseini, Babak, and Hammer, Barbara. “Confident Kernel Sparse Coding and Dictionary Learning”. 2018 IEEE International Conference on Data Mining (ICDM). In Press.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Titel
Presentation slies
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:03Z
MD5 Prüfsumme
6505887b29c4e0f91fca37f0e35be0e6


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1903.05219

Suchen in

Google Scholar