Linear Time Relational Prototype Based Learning

Gisbrecht A, Mokbel B, Schleif F-M, Zhu X, Hammer B (2012)
International Journal of Neural Systems 22(05): 1250021.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2012
Zeitschriftentitel
International Journal of Neural Systems
Band
22
Ausgabe
05
Art.-Nr.
1250021
ISSN
0129-0657
eISSN
1793-6462
Page URI
https://pub.uni-bielefeld.de/record/2625232

Zitieren

Gisbrecht A, Mokbel B, Schleif F-M, Zhu X, Hammer B. Linear Time Relational Prototype Based Learning. International Journal of Neural Systems. 2012;22(05): 1250021.
Gisbrecht, A., Mokbel, B., Schleif, F. - M., Zhu, X., & Hammer, B. (2012). Linear Time Relational Prototype Based Learning. International Journal of Neural Systems, 22(05), 1250021. https://doi.org/10.1142/S0129065712500219
Gisbrecht, Andrej, Mokbel, Bassam, Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. 2012. “Linear Time Relational Prototype Based Learning”. International Journal of Neural Systems 22 (05): 1250021.
Gisbrecht, A., Mokbel, B., Schleif, F. - M., Zhu, X., and Hammer, B. (2012). Linear Time Relational Prototype Based Learning. International Journal of Neural Systems 22:1250021.
Gisbrecht, A., et al., 2012. Linear Time Relational Prototype Based Learning. International Journal of Neural Systems, 22(05): 1250021.
A. Gisbrecht, et al., “Linear Time Relational Prototype Based Learning”, International Journal of Neural Systems, vol. 22, 2012, : 1250021.
Gisbrecht, A., Mokbel, B., Schleif, F.-M., Zhu, X., Hammer, B.: Linear Time Relational Prototype Based Learning. International Journal of Neural Systems. 22, : 1250021 (2012).
Gisbrecht, Andrej, Mokbel, Bassam, Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. “Linear Time Relational Prototype Based Learning”. International Journal of Neural Systems 22.05 (2012): 1250021.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A cluster merging method for time series microarray with production values.
Chira C, Sedano J, Camara M, Prieto C, Villar JR, Corchado E., Int J Neural Syst 24(6), 2014
PMID: 25081426

33 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Foreground detection in video sequences with probabilistic self-organizing maps.
Lopez-Rubio E, Luque-Baena RM, Dominguez E., Int J Neural Syst 21(3), 2011
PMID: 21656925
Adaptive relevance matrices in learning vector quantization.
Schneider P, Biehl M, Hammer B., Neural Comput 21(12), 2009
PMID: 19764875
Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors.
Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P, Smith DJ, Stiekema H, Krone N, Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio B, Terzolo M, Nightingale P, Shackleton CH, Bertagna X, Fassnacht M, Stewart PM., J. Clin. Endocrinol. Metab. 96(12), 2011
PMID: 21917861

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Batch and median neural gas.
Cottrell M, Hammer B, Hasenfuss A, Villmann T., Neural Netw 19(6-7), 2006
PMID: 16782307
How to make large self-organizing maps for nonvectorial data.
Kohonen T, Somervuo P., Neural Netw 15(8-9), 2002
PMID: 12416685
A stochastic self-organizing map for proximity data.
Graepel T, Obermayer K., Neural Comput 11(1), 1999
PMID: 9950727
Self-organizing maps and clustering methods for matrix data.
Seo S, Obermayer K., Neural Netw 17(8-9), 2004
PMID: 15555862

AUTHOR UNKNOWN, 0
Topographic mapping of large dissimilarity data sets.
Hammer B, Hasenfuss A., Neural Comput 22(9), 2010
PMID: 20569180

AUTHOR UNKNOWN, 0

Williams, Adv. Neural Inform. Process. Syst. 13(), 0
Soft learning vector quantization.
Seo S, Obermayer K., Neural Comput 15(7), 2003
PMID: 12816567

Biehl, J. Mach. Learn. Res. 8(), 0

Chen, J. Mach. Learn. Res. 10(), 0

AUTHOR UNKNOWN, 0
Clustered Nystrom method for large scale manifold learning and dimension reduction.
Zhang K, Kwok JT., IEEE Trans Neural Netw 21(10), 2010
PMID: 20805054

AUTHOR UNKNOWN, 0

Maier, Nat. Methods 3(), 0
ExPASy: The proteomics server for in-depth protein knowledge and analysis.
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A., Nucleic Acids Res. 31(13), 2003
PMID: 12824418
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22931439
PubMed | Europe PMC

Suchen in

Google Scholar