Stationarity of Matrix Relevance LVQ
Biehl M, Hammer B, Schleif F-M, Schneider P, Villmann T (2015)
In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Biehl, Michael;
Hammer, BarbaraUniBi ;
Schleif, Frank-Michael;
Schneider, Petra;
Villmann, Thomas
Einrichtung
Abstract / Bemerkung
We
present
a
theoretical
analysis
of
Learning
Vector
Quantization
(LVQ)
with
adaptive
distance
measures.
Specifically,
we
consider
generalized
Euclidean distances
which
are
parameterized
in
terms
of
a
quadratic
matrix
of
adaptive
relevance
parameters.
Winner-takes-all
prescriptions
based
on the
heuristic
LVQl
are in the
center
of
our
interest.
We
derive
and
study
stationarity conditions and show,
among
other
results,
that
stationary
prototypes
can
be
written
as
linear combinations
of
the
training
data
apart
from
irrelevant
contributions
in
the
null-space
of
the
relevance
matrix.
The
investigation
of
the
metrics updates
reveals
that
relevance
matrices
become
singular
with
only
one
or
very
few
non-zero
eigenvalues.
Implications
of
this property
are
discussed
and,
furthermore,
the
effect
of
preventing
singularity
by
introducing
an
appropriate
penalty
term
is
studied.
Theoretical
findings are
confirmed
in
terms
of
illustrative
example data
sets.
Erscheinungsjahr
2015
Titel des Konferenzbandes
2015 International Joint Conference on Neural Networks (IJCNN)
Konferenz
2015 International Joint Conference on Neural Networks (IJCNN)
Konferenzort
Killarney, Ireland
Konferenzdatum
2015-07-12 – 2015-07-17
ISBN
978-1-4799-1960-4
Page URI
https://pub.uni-bielefeld.de/record/2910954
Zitieren
Biehl M, Hammer B, Schleif F-M, Schneider P, Villmann T. Stationarity of Matrix Relevance LVQ. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE; 2015.
Biehl, M., Hammer, B., Schleif, F. - M., Schneider, P., & Villmann, T. (2015). Stationarity of Matrix Relevance LVQ. 2015 International Joint Conference on Neural Networks (IJCNN) IEEE. doi:10.1109/ijcnn.2015.7280441
Biehl, Michael, Hammer, Barbara, Schleif, Frank-Michael, Schneider, Petra, and Villmann, Thomas. 2015. “Stationarity of Matrix Relevance LVQ”. In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE.
Biehl, M., Hammer, B., Schleif, F. - M., Schneider, P., and Villmann, T. (2015). “Stationarity of Matrix Relevance LVQ” in 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE).
Biehl, M., et al., 2015. Stationarity of Matrix Relevance LVQ. In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE.
M. Biehl, et al., “Stationarity of Matrix Relevance LVQ”, 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, 2015.
Biehl, M., Hammer, B., Schleif, F.-M., Schneider, P., Villmann, T.: Stationarity of Matrix Relevance LVQ. 2015 International Joint Conference on Neural Networks (IJCNN). IEEE (2015).
Biehl, Michael, Hammer, Barbara, Schleif, Frank-Michael, Schneider, Petra, and Villmann, Thomas. “Stationarity of Matrix Relevance LVQ”. 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015.