Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles
Muschalik M, Fumagalli F, Hammer B, Hüllermeier E (2024)
Proceedings of the AAAI Conference on Artificial Intelligence 38(13): 14388-14396.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C01: Gesundes Misstrauen in und durch Erklärungen
Technische Fakultät > AG Machine Learning
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C01: Gesundes Misstrauen in und durch Erklärungen
Projekt
Abstract / Bemerkung
While shallow decision trees may be interpretable, larger ensemble models like gradient-boosted trees, which often set the state of the art in machine learning problems involving tabular data, still remain black box models. As a remedy, the Shapley value (SV) is a well-known concept in explainable artificial intelligence (XAI) research for quantifying additive feature attributions of predictions. The model-specific TreeSHAP methodology solves the exponential complexity for retrieving exact SVs from tree-based models. Expanding beyond individual feature attribution, Shapley interactions reveal the impact of intricate feature interactions of any order. In this work, we present TreeSHAP-IQ, an efficient method to compute any-order additive Shapley interactions for predictions of tree-based models. TreeSHAP-IQ is supported by a mathematical framework that exploits polynomial arithmetic to compute the interaction scores in a single recursive traversal of the tree, akin to Linear TreeSHAP. We apply TreeSHAP-IQ on state-of-the-art tree ensembles and explore interactions on well-established benchmark datasets.
Erscheinungsjahr
2024
Zeitschriftentitel
Proceedings of the AAAI Conference on Artificial Intelligence
Band
38
Ausgabe
13
Seite(n)
14388-14396
ISSN
2159-5399
eISSN
2374-3468
Page URI
https://pub.uni-bielefeld.de/record/2988165
Zitieren
Muschalik M, Fumagalli F, Hammer B, Hüllermeier E. Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence. 2024;38(13):14388-14396.
Muschalik, M., Fumagalli, F., Hammer, B., & Hüllermeier, E. (2024). Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence, 38(13), 14388-14396. https://doi.org/10.1609/aaai.v38i13.29352
Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. 2024. “Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles”. Proceedings of the AAAI Conference on Artificial Intelligence 38 (13): 14388-14396.
Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier, E. (2024). Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence 38, 14388-14396.
Muschalik, M., et al., 2024. Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence, 38(13), p 14388-14396.
M. Muschalik, et al., “Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles”, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 14388-14396.
Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles. Proceedings of the AAAI Conference on Artificial Intelligence. 38, 14388-14396 (2024).
Muschalik, Maximilian, Fumagalli, Fabian, Hammer, Barbara, and Hüllermeier, Eyke. “Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles”. Proceedings of the AAAI Conference on Artificial Intelligence 38.13 (2024): 14388-14396.