"I do not know! but why?"- Local model-agnostic example-based explanations of reject
Artelt A, Visser R, Hammer B (2023)
Neurocomputing 558: 126722.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C01: Gesundes Misstrauen in und durch Erklärungen
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
SFB/Transregio 318 Constructing Explainability > Projektbereich C: Darstellung und Berechnung von Erklärungen > Teilprojekt C03: Interpretierbares maschinelles Lernen: Erklärbarkeit in dynamischen Umgebungen
Center of Excellence - Cognitive Interaction Technology CITEC > Machine Learning
Technische Fakultät > AG Machine Learning
Abstract / Bemerkung
Machine learning based decision making systems in safety critical areas place high demands on the accuracy and generalization ability of the underlying model. A common strategy to deal with uncertainties and possible mistakes is offered by learning with reject option, i.e. a model can refrain from prediction in ambiguous cases and leave the decision to a human expert. Yet, as for the models themselves, human decision-making is hampered by the fact that reject options are often implemented as black-box rules: Experts cannot readily understand the reasons for rejection.In this work, we propose a model-agnostic framework that enriches classification with reject option by explanation mechanisms. More specifically, we combine conformal prediction as a popular mathematically based technology of certainty estimation with local surrogates derived for the region of interest. This allows us to provide local explanations in terms of example-based explanation methods, including counterfactual, semi-factual, and factual methods. We demonstrate the performance of this technology through a series of benchmarks using 6 different data sets; the associated code is open source.1
Stichworte
Reject option;
XAI;
Example-based explanations;
Model-agnostic;
explanations;
Local explanations;
Counterfactual explanations;
Conformal;
prediction
Erscheinungsjahr
2023
Zeitschriftentitel
Neurocomputing
Band
558
Art.-Nr.
126722
ISSN
0925-2312
eISSN
1872-8286
Page URI
https://pub.uni-bielefeld.de/record/2983728
Zitieren
Artelt A, Visser R, Hammer B. "I do not know! but why?"- Local model-agnostic example-based explanations of reject. Neurocomputing. 2023;558: 126722.
Artelt, A., Visser, R., & Hammer, B. (2023). "I do not know! but why?"- Local model-agnostic example-based explanations of reject. Neurocomputing, 558, 126722. https://doi.org/10.1016/j.neucom.2023.126722
Artelt, André, Visser, Roel, and Hammer, Barbara. 2023. “"I do not know! but why?"- Local model-agnostic example-based explanations of reject”. Neurocomputing 558: 126722.
Artelt, A., Visser, R., and Hammer, B. (2023). "I do not know! but why?"- Local model-agnostic example-based explanations of reject. Neurocomputing 558:126722.
Artelt, A., Visser, R., & Hammer, B., 2023. "I do not know! but why?"- Local model-agnostic example-based explanations of reject. Neurocomputing, 558: 126722.
A. Artelt, R. Visser, and B. Hammer, “"I do not know! but why?"- Local model-agnostic example-based explanations of reject”, Neurocomputing, vol. 558, 2023, : 126722.
Artelt, A., Visser, R., Hammer, B.: "I do not know! but why?"- Local model-agnostic example-based explanations of reject. Neurocomputing. 558, : 126722 (2023).
Artelt, André, Visser, Roel, and Hammer, Barbara. “"I do not know! but why?"- Local model-agnostic example-based explanations of reject”. Neurocomputing 558 (2023): 126722.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in