Soft Competitive Learning for large data sets

Schleif F-M, Zhu X, Hammer B (2012)
In: Proceedings of MCSD 2012. Berlin, Heidelberg: Springer Berlin Heidelberg: 141-151.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Soft competitive learning is an advanced k-means like clustering approach overcoming some severe drawbacks of k-means, like initialization dependence and sticking to local minima. It achieves lower distortion error than k-means and has shown very good performance in the clustering of complex data sets, using various metrics or kernels. While very effective, it does not scale for large data sets which is even more severe in case of kernels, due to a dense prototype model. In this paper, we propose a novel soft-competitive learning algorithm using core-sets, significantly accelerating the original method in practice with natural sparsity. It effectively deals with very large data sets up to multiple million points. Our method provides also an alternative fast kernelization of soft-competitive learning. In contrast to many other clustering methods the obtained model is based on only few prototypes and shows natural sparsity. It is the first natural sparse kernelized soft competitive learning approach. Numerical experiments on synthetical and benchmark data sets show the efficiency of the proposed method.
Erscheinungsjahr
2012
Titel des Konferenzbandes
Proceedings of MCSD 2012
Seite(n)
141-151
ISBN
978-3-642-32517-5
ISSN
2194-5357
Page URI
https://pub.uni-bielefeld.de/record/2615756

Zitieren

Schleif F-M, Zhu X, Hammer B. Soft Competitive Learning for large data sets. In: Proceedings of MCSD 2012. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012: 141-151.
Schleif, F. - M., Zhu, X., & Hammer, B. (2012). Soft Competitive Learning for large data sets. Proceedings of MCSD 2012, 141-151. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-32518-2_14
Schleif, F. - M., Zhu, X., and Hammer, B. (2012). “Soft Competitive Learning for large data sets” in Proceedings of MCSD 2012 (Berlin, Heidelberg: Springer Berlin Heidelberg), 141-151.
Schleif, F.-M., Zhu, X., & Hammer, B., 2012. Soft Competitive Learning for large data sets. In Proceedings of MCSD 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 141-151.
F.-M. Schleif, X. Zhu, and B. Hammer, “Soft Competitive Learning for large data sets”, Proceedings of MCSD 2012, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.141-151.
Schleif, F.-M., Zhu, X., Hammer, B.: Soft Competitive Learning for large data sets. Proceedings of MCSD 2012. p. 141-151. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. “Soft Competitive Learning for large data sets”. Proceedings of MCSD 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. 141-151.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche