Optimum Reject Options for Prototype-based Classification

Fischer L, Hammer B, Wersing H (2015) .

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
We analyse optimum reject strategies for prototype-based classifiers andreal-valued rejection measures, using the distance of a data point to theclosest prototype or probabilistic counterparts. We compare reject schemes withglobal thresholds, and local thresholds for the Voronoi cells of theclassifier. For the latter, we develop a polynomial-time algorithm to computeoptimum thresholds based on a dynamic programming scheme, and we propose anintuitive linear time, memory efficient approximation thereof with competitiveaccuracy. Evaluating the performance in various benchmarks, we conclude thatlocal reject options are beneficial in particular for simple prototype-basedclassifiers, while the improvement is less pronounced for advanced models. Forthe latter, an accuracy-reject curve which is comparable to support vectormachine classifiers with state of the art reject options can be reached.
Erscheinungsjahr
2015
Page URI
https://pub.uni-bielefeld.de/record/2774656

Zitieren

Fischer L, Hammer B, Wersing H. Optimum Reject Options for Prototype-based Classification. 2015.
Fischer, L., Hammer, B., & Wersing, H. (2015). Optimum Reject Options for Prototype-based Classification
Fischer, Lydia, Hammer, Barbara, and Wersing, Heiko. 2015. “Optimum Reject Options for Prototype-based Classification”.
Fischer, L., Hammer, B., and Wersing, H. (2015). Optimum Reject Options for Prototype-based Classification.
Fischer, L., Hammer, B., & Wersing, H., 2015. Optimum Reject Options for Prototype-based Classification.
L. Fischer, B. Hammer, and H. Wersing, “Optimum Reject Options for Prototype-based Classification”, 2015.
Fischer, L., Hammer, B., Wersing, H.: Optimum Reject Options for Prototype-based Classification. (2015).
Fischer, Lydia, Hammer, Barbara, and Wersing, Heiko. “Optimum Reject Options for Prototype-based Classification”. (2015).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1503.06549

Suchen in

Google Scholar