Extending Drift Detection Methods to Identify When Exactly the Change Happened

Vieth M, Schulz A, Hammer B (2023)
In: Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 92-104.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Rojas, Ignacio; Joya, Gonzalo; Catala, Andreu
Abstract / Bemerkung
Data changing, or drifting, over time is a major problem when using classical machine learning on data streams. One approach to deal with this is to detect changes and react accordingly, for example by retraining the model. Most existing drift detection methods only report that a drift has happened between two time windows, but not when exactly. In this paper, we present extensions for three popular methods, MMDDDM, HDDDM, and D3, to determine precisely when the drift happened, i.e. between which samples. One major advantage of our extensions is that no additional hyperparameters are required. In experiments, with an emphasis on high-dimensional, real-world datasets, we show that they successfully identify when the drifts happen, and in some cases even lead to fewer false positives and false negatives (undetected drifts), while making the methods only negligibly slower. In general, our extensions may enable a faster, more robust adaptation to changes in data streams.
Erscheinungsjahr
2023
Buchtitel
Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I
Serientitel
Lecture Notes in Computer Science
Seite(n)
92-104
ISBN
978-3-031-43084-8
eISBN
978-3-031-43085-5
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2983250

Zitieren

Vieth M, Schulz A, Hammer B. Extending Drift Detection Methods to Identify When Exactly the Change Happened. In: Rojas I, Joya G, Catala A, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland; 2023: 92-104.
Vieth, M., Schulz, A., & Hammer, B. (2023). Extending Drift Detection Methods to Identify When Exactly the Change Happened. In I. Rojas, G. Joya, & A. Catala (Eds.), Lecture Notes in Computer Science. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I (pp. 92-104). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43085-5_8
Vieth, Markus, Schulz, Alexander, and Hammer, Barbara. 2023. “Extending Drift Detection Methods to Identify When Exactly the Change Happened”. In Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I, ed. Ignacio Rojas, Gonzalo Joya, and Andreu Catala, 92-104. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland.
Vieth, M., Schulz, A., and Hammer, B. (2023). “Extending Drift Detection Methods to Identify When Exactly the Change Happened” in Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I, Rojas, I., Joya, G., and Catala, A. eds. Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 92-104.
Vieth, M., Schulz, A., & Hammer, B., 2023. Extending Drift Detection Methods to Identify When Exactly the Change Happened. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 92-104.
M. Vieth, A. Schulz, and B. Hammer, “Extending Drift Detection Methods to Identify When Exactly the Change Happened”, Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I, I. Rojas, G. Joya, and A. Catala, eds., Lecture Notes in Computer Science, Cham: Springer Nature Switzerland, 2023, pp.92-104.
Vieth, M., Schulz, A., Hammer, B.: Extending Drift Detection Methods to Identify When Exactly the Change Happened. In: Rojas, I., Joya, G., and Catala, A. (eds.) Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. p. 92-104. Springer Nature Switzerland, Cham (2023).
Vieth, Markus, Schulz, Alexander, and Hammer, Barbara. “Extending Drift Detection Methods to Identify When Exactly the Change Happened”. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Ed. Ignacio Rojas, Gonzalo Joya, and Andreu Catala. Cham: Springer Nature Switzerland, 2023. Lecture Notes in Computer Science. 92-104.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche