Regularization and improved interpretation of linear data mappings and adaptive distance measures
Strickert M, Hammer B, Villmann T, Biehl M (2013)
In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE: 10-17.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Strickert, Marc;
Hammer, BarbaraUniBi ;
Villmann, Thomas;
Biehl, Michael
Abstract / Bemerkung
Linear data transformations are essential operations in many machine learning algorithms, helping to make such models more flexible or to emphasize certain data directions. In particular for high dimensional data sets linear transformations are not necessarily uniquely determined, though, and alternative parameterizations exist which do not change the mapping of the training data. Thus, regularization is required to make the model robust to noise and more interpretable for the user. In this contribution, we characterize the group of transformations which leave a linear mapping invariant for a given finite data set, and we discuss the consequences on the interpretability of the models. We propose an intuitive regularization mechanism to avoid problems in under-determined configurations, and we test the approach in two machine learning models.
Erscheinungsjahr
2013
Titel des Konferenzbandes
2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
Seite(n)
10-17
Konferenz
2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
Konferenzort
Singapore, Singapore
eISBN
978-1-4673-5895-8
Page URI
https://pub.uni-bielefeld.de/record/2982104
Zitieren
Strickert M, Hammer B, Villmann T, Biehl M. Regularization and improved interpretation of linear data mappings and adaptive distance measures. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE; 2013: 10-17.
Strickert, M., Hammer, B., Villmann, T., & Biehl, M. (2013). Regularization and improved interpretation of linear data mappings and adaptive distance measures. 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 10-17. IEEE. https://doi.org/10.1109/CIDM.2013.6597211
Strickert, Marc, Hammer, Barbara, Villmann, Thomas, and Biehl, Michael. 2013. “Regularization and improved interpretation of linear data mappings and adaptive distance measures”. In 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 10-17. IEEE.
Strickert, M., Hammer, B., Villmann, T., and Biehl, M. (2013). “Regularization and improved interpretation of linear data mappings and adaptive distance measures” in 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (IEEE), 10-17.
Strickert, M., et al., 2013. Regularization and improved interpretation of linear data mappings and adaptive distance measures. In 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, pp. 10-17.
M. Strickert, et al., “Regularization and improved interpretation of linear data mappings and adaptive distance measures”, 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2013, pp.10-17.
Strickert, M., Hammer, B., Villmann, T., Biehl, M.: Regularization and improved interpretation of linear data mappings and adaptive distance measures. 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). p. 10-17. IEEE (2013).
Strickert, Marc, Hammer, Barbara, Villmann, Thomas, and Biehl, Michael. “Regularization and improved interpretation of linear data mappings and adaptive distance measures”. 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, 2013. 10-17.