acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data

Lux M, Krüger J, Rinke C, Maus I, Schlüter A, Woyke T, Sczyrba A, Hammer B (2016)
BMC Bioinformatics 17(1): 543.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.35 MB
Abstract / Bemerkung
Background A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. Results We present acdc, a tool specifically developed to aid the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Conclusions Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.
Single-cell sequencing Contamination detection Machine learning Clustering Binning Quality control
BMC Bioinformatics
Page URI


Lux M, Krüger J, Rinke C, et al. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics. 2016;17(1): 543.
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., et al. (2016). acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics, 17(1), 543. doi:10.1186/s12859-016-1397-7
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., and Hammer, B. (2016). acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics 17:543.
Lux, M., et al., 2016. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics, 17(1): 543.
M. Lux, et al., “acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data”, BMC Bioinformatics, vol. 17, 2016, : 543.
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., Hammer, B.: acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics. 17, : 543 (2016).
Lux, Markus, Krüger, Jan, Rinke, Christian, Maus, Irena, Schlüter, Andreas, Woyke, Tanja, Sczyrba, Alexander, and Hammer, Barbara. “acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data”. BMC Bioinformatics 17.1 (2016): 543.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Defending Our Public Biological Databases as a Global Critical Infrastructure.
Caswell J, Gans JD, Generous N, Hudson CM, Merkley E, Johnson C, Oehmen C, Omberg K, Purvine E, Taylor K, Ting CL, Wolinsky M, Xie G., Front Bioeng Biotechnol 7(), 2019
PMID: 31024904
Primer-free FISH probes from metagenomics/metatranscriptomics data permit the study of uncharacterised taxa in complex microbial communities.
Tan SM, Yung PYM, Hutchinson PE, Xie C, Teo GH, Ismail MH, Drautz-Moses DI, Little PFR, Williams RBH, Cohen Y., NPJ Biofilms Microbiomes 5(), 2019
PMID: 31263569
Testing culture purity in prokaryotes: criteria and challenges.
Pinevich AV, Andronov EE, Pershina EV, Pinevich AA, Dmitrieva HY., Antonie Van Leeuwenhoek 111(9), 2018
PMID: 29488181
Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors.
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M., Biotechnol Biofuels 11(), 2018
PMID: 29951113
Consensus assessment of the contamination level of publicly available cyanobacterial genomes.
Cornet L, Meunier L, Van Vlierberghe M, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D., PLoS One 13(7), 2018
PMID: 30044797
A Novel Small-Molecule Inhibitor of the Mycobacterium tuberculosis Demethylmenaquinone Methyltransferase MenG Is Bactericidal to Both Growing and Nutritionally Deprived Persister Cells.
Sukheja P, Kumar P, Mittal N, Li SG, Singleton E, Russo R, Perryman AL, Shrestha R, Awasthi D, Husain S, Soteropoulos P, Brukh R, Connell N, Freundlich JS, Alland D., MBio 8(1), 2017
PMID: 28196957
Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T., Nat Biotechnol 35(8), 2017
PMID: 28787424
Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion.
Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-Austin C, Gonzalez-Escalona N., MBio 8(6), 2017
PMID: 29138301

45 References

Daten bereitgestellt von Europe PubMed Central.

Food for thought.
AUTHOR UNKNOWN, Nat. Chem. Biol. 11(1), 2015
PMID: 25517376
The promise of single-cell sequencing.
Eberwine J, Sul JY, Bartfai T, Kim J., Nat. Methods 11(1), 2014
PMID: 24524134
Single-cell analysis: toward the clinic.
Speicher MR., Genome Med 5(8), 2013
PMID: 23998189

Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean.
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R., Science 333(6047), 2011
PMID: 21885783
The future is now: single-cell genomics of bacteria and archaea.
Blainey PC., FEMS Microbiol. Rev. 37(3), 2013
PMID: 23298390
Decontamination of MDA reagents for single cell whole genome amplification.
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF., PLoS ONE 6(10), 2011
PMID: 22028825
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW., BMC Biol. 12(), 2014
PMID: 25387460
Single-cell genome sequencing: current state of the science.
Gawad C, Koh W, Quake SR., Nat. Rev. Genet. 17(3), 2016
PMID: 26806412
ProDeGe: a computational protocol for fully automated decontamination of genomes.
Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, Dangl JL, Ivanova N, Woyke T, Kyrpides N, Pati A., ISME J 10(1), 2015
PMID: 26057843
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW., Genome Res. 25(7), 2015
PMID: 25977477
metaBEETL: high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences.
Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ., BMC Bioinformatics 14 Suppl 5(), 2013
PMID: 23734710
Kraken: ultrafast metagenomic sequence classification using exact alignments.
Wood DE, Salzberg SL., Genome Biol. 15(3), 2014
PMID: 24580807
Classification of metagenomic sequences: methods and challenges.
Mande SS, Mohammed MH, Ghosh TS., Brief. Bioinformatics 13(6), 2012
PMID: 22962338
Alignment-free visualization of metagenomic data by nonlinear dimension reduction.
Laczny CC, Pinel N, Vlassis N, Wilmes P., Sci Rep 4(), 2014
PMID: 24682077

Estimating the number of clusters in a data set via the gap statistic
Tibshirani R, Walther G, Hastie T., 2001
Accelerating t-sne using tree-based algorithms
Van L., 2014
Relative clustering validity criteria: a comparative overview
Vendramin L, Campello RJGB, Hruschka ER., 2010
Data clustering: 50 years beyond k-means
Jain AK., 2010


Application of tetranucleotide frequencies for the assignment of genomic fragments.
Teeling H, Meyerdierks A, Bauer M, Amann R, Glockner FO., Environ. Microbiol. 6(9), 2004
PMID: 15305919
Visualizing data using t-sne
Van L, Hinton G., 2008


Why so many clustering algorithms: a position paper
Estivill-Castro V., 2002

The dip test of unimodality
Hartigan JA, Hartigan P., 1985

A tutorial on spectral clustering
Von U., 2007
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365

The NCBI biosystems database
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH., 2009
ART: a next-generation sequencing read simulator.
Huang W, Li L, Myers JR, Marth GT., Bioinformatics 28(4), 2011
PMID: 22199392
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
Effects of sample treatments on genome recovery via single-cell genomics.
Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T., ISME J 8(12), 2014
PMID: 24926860
Reconstructing each cell's genome within complex microbial communities-dream or reality?
Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T., Front Microbiol 5(), 2014
PMID: 25620966
Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor.
Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH., Int. J. Syst. Evol. Microbiol. 65(8), 2015
PMID: 25872956

Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Puhler A, Konig H, Schluter A., J. Biotechnol. 192 Pt A(), 2014
PMID: 25270020


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 27998267
PubMed | Europe PMC

Suchen in

Google Scholar