acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
Lux M, Krüger J, Rinke C, Maus I, Schlüter A, Woyke T, Sczyrba A, Hammer B (2016)
BMC Bioinformatics 17(1): 543.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Lux, MarkusUniBi;
Krüger, JanUniBi;
Rinke, Christian;
Maus, IrenaUniBi;
Schlüter, AndreasUniBi ;
Woyke, Tanja;
Sczyrba, AlexanderUniBi ;
Hammer, BarbaraUniBi
Einrichtung
Technische Fakultät > Computational Metagenomics
Centrum für Biotechnologie > Arbeitsgruppe A. Pühler
Technische Fakultät > Int. Graduiertenkolleg DiDy (GRK 1906)
Centrum für Biotechnologie > Graduate Center > Graduate Cluster Industrial Biotechnology
Center of Excellence - Cognitive Interaction Technology CITEC
Technische Fakultät > AG Machine Learning
Centrum für Biotechnologie > Arbeitsgruppe A. Sczyrba
Centrum für Biotechnologie > Arbeitsgruppe A. Pühler
Technische Fakultät > Int. Graduiertenkolleg DiDy (GRK 1906)
Centrum für Biotechnologie > Graduate Center > Graduate Cluster Industrial Biotechnology
Center of Excellence - Cognitive Interaction Technology CITEC
Technische Fakultät > AG Machine Learning
Centrum für Biotechnologie > Arbeitsgruppe A. Sczyrba
Abstract / Bemerkung
Background
A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data.
Results
We present acdc, a tool specifically developed to aid the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows.
Conclusions
Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.
Stichworte
Single-cell sequencing Contamination detection Machine learning Clustering Binning Quality control
Erscheinungsjahr
2016
Zeitschriftentitel
BMC Bioinformatics
Band
17
Ausgabe
1
Art.-Nr.
543
ISSN
1471-2105
eISSN
1471-2105
Page URI
https://pub.uni-bielefeld.de/record/2907633
Zitieren
Lux M, Krüger J, Rinke C, et al. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics. 2016;17(1): 543.
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., et al. (2016). acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics, 17(1), 543. doi:10.1186/s12859-016-1397-7
Lux, Markus, Krüger, Jan, Rinke, Christian, Maus, Irena, Schlüter, Andreas, Woyke, Tanja, Sczyrba, Alexander, and Hammer, Barbara. 2016. “acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data”. BMC Bioinformatics 17 (1): 543.
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., and Hammer, B. (2016). acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics 17:543.
Lux, M., et al., 2016. acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics, 17(1): 543.
M. Lux, et al., “acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data”, BMC Bioinformatics, vol. 17, 2016, : 543.
Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., Sczyrba, A., Hammer, B.: acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics. 17, : 543 (2016).
Lux, Markus, Krüger, Jan, Rinke, Christian, Maus, Irena, Schlüter, Andreas, Woyke, Tanja, Sczyrba, Alexander, and Hammer, Barbara. “acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data”. BMC Bioinformatics 17.1 (2016): 543.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:42Z
MD5 Prüfsumme
257bfb9ecdfe25825cf220fe0ae44265
Daten bereitgestellt von European Bioinformatics Institute (EBI)
10 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Niche Differentiation among Three Closely Related Competibacteraceae Clades at a Full-Scale Activated Sludge Wastewater Treatment Plant and Putative Linkages to Process Performance.
Brand VR, Crosby LD, Criddle CS., Appl Environ Microbiol 85(5), 2019
PMID: 30578268
Brand VR, Crosby LD, Criddle CS., Appl Environ Microbiol 85(5), 2019
PMID: 30578268
Defending Our Public Biological Databases as a Global Critical Infrastructure.
Caswell J, Gans JD, Generous N, Hudson CM, Merkley E, Johnson C, Oehmen C, Omberg K, Purvine E, Taylor K, Ting CL, Wolinsky M, Xie G., Front Bioeng Biotechnol 7(), 2019
PMID: 31024904
Caswell J, Gans JD, Generous N, Hudson CM, Merkley E, Johnson C, Oehmen C, Omberg K, Purvine E, Taylor K, Ting CL, Wolinsky M, Xie G., Front Bioeng Biotechnol 7(), 2019
PMID: 31024904
Primer-free FISH probes from metagenomics/metatranscriptomics data permit the study of uncharacterised taxa in complex microbial communities.
Tan SM, Yung PYM, Hutchinson PE, Xie C, Teo GH, Ismail MH, Drautz-Moses DI, Little PFR, Williams RBH, Cohen Y., NPJ Biofilms Microbiomes 5(), 2019
PMID: 31263569
Tan SM, Yung PYM, Hutchinson PE, Xie C, Teo GH, Ismail MH, Drautz-Moses DI, Little PFR, Williams RBH, Cohen Y., NPJ Biofilms Microbiomes 5(), 2019
PMID: 31263569
Testing culture purity in prokaryotes: criteria and challenges.
Pinevich AV, Andronov EE, Pershina EV, Pinevich AA, Dmitrieva HY., Antonie Van Leeuwenhoek 111(9), 2018
PMID: 29488181
Pinevich AV, Andronov EE, Pershina EV, Pinevich AA, Dmitrieva HY., Antonie Van Leeuwenhoek 111(9), 2018
PMID: 29488181
Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors.
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M., Biotechnol Biofuels 11(), 2018
PMID: 29951113
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M., Biotechnol Biofuels 11(), 2018
PMID: 29951113
Consensus assessment of the contamination level of publicly available cyanobacterial genomes.
Cornet L, Meunier L, Van Vlierberghe M, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D., PLoS One 13(7), 2018
PMID: 30044797
Cornet L, Meunier L, Van Vlierberghe M, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D., PLoS One 13(7), 2018
PMID: 30044797
A Novel Small-Molecule Inhibitor of the Mycobacterium tuberculosis Demethylmenaquinone Methyltransferase MenG Is Bactericidal to Both Growing and Nutritionally Deprived Persister Cells.
Sukheja P, Kumar P, Mittal N, Li SG, Singleton E, Russo R, Perryman AL, Shrestha R, Awasthi D, Husain S, Soteropoulos P, Brukh R, Connell N, Freundlich JS, Alland D., MBio 8(1), 2017
PMID: 28196957
Sukheja P, Kumar P, Mittal N, Li SG, Singleton E, Russo R, Perryman AL, Shrestha R, Awasthi D, Husain S, Soteropoulos P, Brukh R, Connell N, Freundlich JS, Alland D., MBio 8(1), 2017
PMID: 28196957
Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T., Nat Biotechnol 35(8), 2017
PMID: 28787424
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T., Nat Biotechnol 35(8), 2017
PMID: 28787424
Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion.
Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-Austin C, Gonzalez-Escalona N., MBio 8(6), 2017
PMID: 29138301
Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-Austin C, Gonzalez-Escalona N., MBio 8(6), 2017
PMID: 29138301
Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes.
Sewell HL, Kaster AK, Spormann AM., MBio 8(6), 2017
PMID: 29259088
Sewell HL, Kaster AK, Spormann AM., MBio 8(6), 2017
PMID: 29259088
45 References
Daten bereitgestellt von Europe PubMed Central.
The promise of single-cell sequencing.
Eberwine J, Sul JY, Bartfai T, Kim J., Nat. Methods 11(1), 2014
PMID: 24524134
Eberwine J, Sul JY, Bartfai T, Kim J., Nat. Methods 11(1), 2014
PMID: 24524134
The first five years of single-cell cancer genomics and beyond.
Navin NE., Genome Res. 25(10), 2015
PMID: 26430160
Navin NE., Genome Res. 25(10), 2015
PMID: 26430160
AUTHOR UNKNOWN, 0
Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean.
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R., Science 333(6047), 2011
PMID: 21885783
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R., Science 333(6047), 2011
PMID: 21885783
The future is now: single-cell genomics of bacteria and archaea.
Blainey PC., FEMS Microbiol. Rev. 37(3), 2013
PMID: 23298390
Blainey PC., FEMS Microbiol. Rev. 37(3), 2013
PMID: 23298390
Decontamination of MDA reagents for single cell whole genome amplification.
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF., PLoS ONE 6(10), 2011
PMID: 22028825
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF., PLoS ONE 6(10), 2011
PMID: 22028825
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW., BMC Biol. 12(), 2014
PMID: 25387460
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW., BMC Biol. 12(), 2014
PMID: 25387460
Single-cell genome sequencing: current state of the science.
Gawad C, Koh W, Quake SR., Nat. Rev. Genet. 17(3), 2016
PMID: 26806412
Gawad C, Koh W, Quake SR., Nat. Rev. Genet. 17(3), 2016
PMID: 26806412
ProDeGe: a computational protocol for fully automated decontamination of genomes.
Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, Dangl JL, Ivanova N, Woyke T, Kyrpides N, Pati A., ISME J 10(1), 2015
PMID: 26057843
Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, Dangl JL, Ivanova N, Woyke T, Kyrpides N, Pati A., ISME J 10(1), 2015
PMID: 26057843
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW., Genome Res. 25(7), 2015
PMID: 25977477
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW., Genome Res. 25(7), 2015
PMID: 25977477
metaBEETL: high-throughput analysis of heterogeneous microbial populations from shotgun DNA sequences.
Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ., BMC Bioinformatics 14 Suppl 5(), 2013
PMID: 23734710
Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ., BMC Bioinformatics 14 Suppl 5(), 2013
PMID: 23734710
READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation.
Naeem R, Rashid M, Pain A., Bioinformatics 29(3), 2012
PMID: 23193222
Naeem R, Rashid M, Pain A., Bioinformatics 29(3), 2012
PMID: 23193222
Kraken: ultrafast metagenomic sequence classification using exact alignments.
Wood DE, Salzberg SL., Genome Biol. 15(3), 2014
PMID: 24580807
Wood DE, Salzberg SL., Genome Biol. 15(3), 2014
PMID: 24580807
Classification of metagenomic sequences: methods and challenges.
Mande SS, Mohammed MH, Ghosh TS., Brief. Bioinformatics 13(6), 2012
PMID: 22962338
Mande SS, Mohammed MH, Ghosh TS., Brief. Bioinformatics 13(6), 2012
PMID: 22962338
Alignment-free visualization of metagenomic data by nonlinear dimension reduction.
Laczny CC, Pinel N, Vlassis N, Wilmes P., Sci Rep 4(), 2014
PMID: 24682077
Laczny CC, Pinel N, Vlassis N, Wilmes P., Sci Rep 4(), 2014
PMID: 24682077
AUTHOR UNKNOWN, 0
Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes.
Lin HH, Liao YC., Sci Rep 6(), 2016
PMID: 27067514
Lin HH, Liao YC., Sci Rep 6(), 2016
PMID: 27067514
Estimating the number of clusters in a data set via the gap statistic
Tibshirani R, Walther G, Hastie T., 2001
Tibshirani R, Walther G, Hastie T., 2001
Accelerating t-sne using tree-based algorithms
Van L., 2014
Van L., 2014
Relative clustering validity criteria: a comparative overview
Vendramin L, Campello RJGB, Hruschka ER., 2010
Vendramin L, Campello RJGB, Hruschka ER., 2010
Data clustering: 50 years beyond k-means
Jain AK., 2010
Jain AK., 2010
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Application of tetranucleotide frequencies for the assignment of genomic fragments.
Teeling H, Meyerdierks A, Bauer M, Amann R, Glockner FO., Environ. Microbiol. 6(9), 2004
PMID: 15305919
Teeling H, Meyerdierks A, Bauer M, Amann R, Glockner FO., Environ. Microbiol. 6(9), 2004
PMID: 15305919
Visualizing data using t-sne
Van L, Hinton G., 2008
Van L, Hinton G., 2008
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Why so many clustering algorithms: a position paper
Estivill-Castro V., 2002
Estivill-Castro V., 2002
AUTHOR UNKNOWN, 0
The dip test of unimodality
Hartigan JA, Hartigan P., 1985
Hartigan JA, Hartigan P., 1985
AUTHOR UNKNOWN, 0
A tutorial on spectral clustering
Von U., 2007
Von U., 2007
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365
AUTHOR UNKNOWN, 0
The NCBI biosystems database
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH., 2009
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH., 2009
ART: a next-generation sequencing read simulator.
Huang W, Li L, Myers JR, Marth GT., Bioinformatics 28(4), 2011
PMID: 22199392
Huang W, Li L, Myers JR, Marth GT., Bioinformatics 28(4), 2011
PMID: 22199392
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
Effects of sample treatments on genome recovery via single-cell genomics.
Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T., ISME J 8(12), 2014
PMID: 24926860
Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T., ISME J 8(12), 2014
PMID: 24926860
Reconstructing each cell's genome within complex microbial communities-dream or reality?
Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T., Front Microbiol 5(), 2014
PMID: 25620966
Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T., Front Microbiol 5(), 2014
PMID: 25620966
Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor.
Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH., Int. J. Syst. Evol. Microbiol. 65(8), 2015
PMID: 25872956
Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH., Int. J. Syst. Evol. Microbiol. 65(8), 2015
PMID: 25872956
AUTHOR UNKNOWN, 0
Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Puhler A, Konig H, Schluter A., J. Biotechnol. 192 Pt A(), 2014
PMID: 25270020
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Puhler A, Konig H, Schluter A., J. Biotechnol. 192 Pt A(), 2014
PMID: 25270020
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 27998267
PubMed | Europe PMC
Suchen in