Friedrich Götze
PEVZ-ID
151 Publikationen
-
-
-
-
-
-
-
-
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2964210Götze, F., Zaitsev, A.Y.: A New Bound in the Littlewood–Offord Problem. Mathematics. 10, : 1740 (2022).PUB | PDF | DOI | Download (ext.) | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2963454Götze, F., Zaitsev, Y.: On Alternative Approximating Distributions in the Multivariate Version of Kolmogorov's Second Uniform Limit Theorem. Theory of Probability and its Applications : a publication of the Society for Industrial and Applied Mathematics . 67, 1-16 (2022).PUB | DOI | WoS
-
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2955377Akemann, G., Götze, F., Neuschel, T.: Characteristic polynomials of products of non-Hermitian Wigner matrices: finite-N results and Lyapunov universality. Electronic Communications in Probability . 26, : 30 (2021).PUB | DOI | WoS | arXiv
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2694675Baake, M., Götze, F., Huck, C., Jakobi, T.: Radial spacing distributions from planar point sets. Acta crystallographica. Section A, Foundations and advances. 70, 472-482 (2014).PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1876107Götze, F., Gordin, M.: Limiting distributions of theta series on Siegel half-spaces. St. Petersburg mathematical journal. 15, 81-102 (2004).PUB
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1882483Götze, F.: Lattice point problems and the central limit theorem in Euclidean spaces. Documenta Mathematica. 1998, 245-255 (1998).PUB
-
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1879278Götze, F.: Errata: "Lattice point problems and the central limit theorem in Euclidean spaces". Documenta Mathematica. 1998, 648 (1998).PUB
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-