Friedrich Götze
PEVZ-ID
151 Publikationen
-
-
-
-
-
-
-
-
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2964210F. Götze, and A. Y. Zaitsev, “A New Bound in the Littlewood–Offord Problem”, Mathematics, 2022, 10, : 1740.PUB | PDF | DOI | Download (ext.) | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2963454F. Götze, and Y. Zaitsev, “On Alternative Approximating Distributions in the Multivariate Version of Kolmogorov's Second Uniform Limit Theorem”, Theory of Probability and its Applications : a publication of the Society for Industrial and Applied Mathematics , 2022, 67, 1-16.PUB | DOI | WoS
-
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2955377G. Akemann, F. Götze, and T. Neuschel, “Characteristic polynomials of products of non-Hermitian Wigner matrices: finite-N results and Lyapunov universality”, Electronic Communications in Probability , 2021, 26, : 30.PUB | DOI | WoS | arXiv
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2694675M. Baake, F. Götze, C. Huck, and T. Jakobi, “Radial spacing distributions from planar point sets”, Acta crystallographica. Section A, Foundations and advances, 2014, 70, 472-482.PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1876107F. Götze, and M. Gordin, “Limiting distributions of theta series on Siegel half-spaces”, St. Petersburg mathematical journal, 2004, 15, 81-102.PUB
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1882483F. Götze, “Lattice point problems and the central limit theorem in Euclidean spaces”, Documenta Mathematica, 1998, 1998, 245-255.PUB
-
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1879278F. Götze, “Errata: "Lattice point problems and the central limit theorem in Euclidean spaces"”, Documenta Mathematica, 1998, 1998, 648.PUB
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-