STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS

Bobkov SG, Chistyakov G, Götze F (2013)
Theory Of Probability & Its Applications 57(4): 568-588.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The stability property in Cramer's characterization of the normal law is considered in the case of identically distributed summands. As opposite results, instability is shown with respect to strong distances including the entropic distance to normality (addressing a question of M. Kac).
Erscheinungsjahr
Zeitschriftentitel
Theory Of Probability & Its Applications
Band
57
Ausgabe
4
Seite(n)
568-588
ISSN
PUB-ID

Zitieren

Bobkov SG, Chistyakov G, Götze F. STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS. Theory Of Probability & Its Applications. 2013;57(4):568-588.
Bobkov, S. G., Chistyakov, G., & Götze, F. (2013). STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS. Theory Of Probability & Its Applications, 57(4), 568-588. doi:10.1137/S0040585X97986217
Bobkov, S. G., Chistyakov, G., and Götze, F. (2013). STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS. Theory Of Probability & Its Applications 57, 568-588.
Bobkov, S.G., Chistyakov, G., & Götze, F., 2013. STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS. Theory Of Probability & Its Applications, 57(4), p 568-588.
S.G. Bobkov, G. Chistyakov, and F. Götze, “STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS”, Theory Of Probability & Its Applications, vol. 57, 2013, pp. 568-588.
Bobkov, S.G., Chistyakov, G., Götze, F.: STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS. Theory Of Probability & Its Applications. 57, 568-588 (2013).
Bobkov, S. G., Chistyakov, Gennadiy, and Götze, Friedrich. “STABILITY PROBLEMS IN CRAMER-TYPE CHARACTERIZATION IN CASE OF IID SUMMANDS”. Theory Of Probability & Its Applications 57.4 (2013): 568-588.