Distribution of values of quadratic forms at integral points

Buterus P, Götze F, Hille T, Margulis G (2022)
Inventiones Mathematicae 227.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
OA 1.32 MB
Autor*in
Buterus, P.; Götze, FriedrichUniBi; Hille, T.; Margulis, G.
Abstract / Bemerkung
The number of lattice points in d-dimensional hyperbolic or elliptic shells {m : a < Q[m] < b}, which are restricted to rescaled and growing domains r Omega, is approximated by the volume. An effective error bound of order o(r(d-2)) for this approximation is proved based on Diophantine approximation properties of the quadratic form Q. These results allow to show effective variants of previous non-effective results in the quantitative Oppenheim problem and extend known effective results in dimension d >= 9 to dimension d >= 5. They apply to wide shells when b - a is growing with r and to positive definite forms Q. For indefinite forms they provide explicit bounds (depending on the signature or Diophantine properties of Q) for the size of non-zero integral points m in dimension d >= 5 solving the Diophantine inequality vertical bar Q[m]vertical bar < epsilon and provide error bounds comparable with those for positive forms up to powers of log r.
Erscheinungsjahr
2022
Zeitschriftentitel
Inventiones Mathematicae
Band
227
ISSN
0020-9910
eISSN
1432-1297
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2961330

Zitieren

Buterus P, Götze F, Hille T, Margulis G. Distribution of values of quadratic forms at integral points. Inventiones Mathematicae . 2022;227.
Buterus, P., Götze, F., Hille, T., & Margulis, G. (2022). Distribution of values of quadratic forms at integral points. Inventiones Mathematicae , 227. https://doi.org/10.1007/s00222-021-01086-6
Buterus, P., Götze, Friedrich, Hille, T., and Margulis, G. 2022. “Distribution of values of quadratic forms at integral points”. Inventiones Mathematicae 227.
Buterus, P., Götze, F., Hille, T., and Margulis, G. (2022). Distribution of values of quadratic forms at integral points. Inventiones Mathematicae 227.
Buterus, P., et al., 2022. Distribution of values of quadratic forms at integral points. Inventiones Mathematicae , 227.
P. Buterus, et al., “Distribution of values of quadratic forms at integral points”, Inventiones Mathematicae , vol. 227, 2022.
Buterus, P., Götze, F., Hille, T., Margulis, G.: Distribution of values of quadratic forms at integral points. Inventiones Mathematicae . 227, (2022).
Buterus, P., Götze, Friedrich, Hille, T., and Margulis, G. “Distribution of values of quadratic forms at integral points”. Inventiones Mathematicae 227 (2022).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-04-22T07:08:06Z
MD5 Prüfsumme
0e24deb91838b0ac02fdd5bee2efa2fc


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar