Friedrich Götze
PEVZ-ID
151 Publikationen
-
-
-
-
-
-
-
-
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2964210Götze F, Zaitsev AY (2022)PUB | PDF | DOI | Download (ext.) | WoS
A New Bound in the Littlewood–Offord Problem.
Mathematics 10(10): 1740. -
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2963454Götze F, Zaitsev Y (2022)PUB | DOI | WoS
On Alternative Approximating Distributions in the Multivariate Version of Kolmogorov's Second Uniform Limit Theorem.
Theory of Probability and its Applications : a publication of the Society for Industrial and Applied Mathematics 67(1): 1-16. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2694675Baake M, Götze F, Huck C, Jakobi T (2014)PUB | DOI | WoS | PubMed | Europe PMC
Radial spacing distributions from planar point sets.
Acta crystallographica. Section A, Foundations and advances 70(Pt 5): 472-482. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1876107Götze F, Gordin M (2004)PUB
Limiting distributions of theta series on Siegel half-spaces.
St. Petersburg mathematical journal 15(1): 81-102. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1882483Götze F (1998)PUB
Lattice point problems and the central limit theorem in Euclidean spaces.
Documenta Mathematica 1998(Extra Vol. III): 245-255. -
1998 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1879278Götze F (1998)PUB
Errata: "Lattice point problems and the central limit theorem in Euclidean spaces".
Documenta Mathematica 1998(Extra Vol. I): 648. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-