On the largest and the smallest singular value of sparse rectangular random matrices
Götze F, Tikhomirov A (2023)
Electronic Journal of Probability 28: 27.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Götze, FriedrichUniBi;
Tikhomirov, A.
Einrichtung
Abstract / Bemerkung
We derive estimates for the largest and smallest singular values of sparse rectangular N x n random matrices, assuming lim(N,n ->infinity) n/N = y is an element of (0, 1). We consider a model with sparsity parameter p(N) such that N-pN similar to log(alpha) N for some alpha > 1, and assume that the moments of the matrix elements satisfy the condition E|X-jk|(4+delta) <= C < infinity. We assume also that the entries of matrices we consider are truncated at the level (NpN)(1/2-(sic)) with {(sic):= delta/2(4+delta).
Stichworte
random matrices;
sample covariance matrices;
Marchenko-Pastur law
Erscheinungsjahr
2023
Zeitschriftentitel
Electronic Journal of Probability
Band
28
Art.-Nr.
27
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2984564
Zitieren
Götze F, Tikhomirov A. On the largest and the smallest singular value of sparse rectangular random matrices. Electronic Journal of Probability . 2023;28: 27.
Götze, F., & Tikhomirov, A. (2023). On the largest and the smallest singular value of sparse rectangular random matrices. Electronic Journal of Probability , 28, 27. https://doi.org/10.1214/23-EJP919
Götze, Friedrich, and Tikhomirov, A. 2023. “On the largest and the smallest singular value of sparse rectangular random matrices”. Electronic Journal of Probability 28: 27.
Götze, F., and Tikhomirov, A. (2023). On the largest and the smallest singular value of sparse rectangular random matrices. Electronic Journal of Probability 28:27.
Götze, F., & Tikhomirov, A., 2023. On the largest and the smallest singular value of sparse rectangular random matrices. Electronic Journal of Probability , 28: 27.
F. Götze and A. Tikhomirov, “On the largest and the smallest singular value of sparse rectangular random matrices”, Electronic Journal of Probability , vol. 28, 2023, : 27.
Götze, F., Tikhomirov, A.: On the largest and the smallest singular value of sparse rectangular random matrices. Electronic Journal of Probability . 28, : 27 (2023).
Götze, Friedrich, and Tikhomirov, A. “On the largest and the smallest singular value of sparse rectangular random matrices”. Electronic Journal of Probability 28 (2023): 27.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in