On the local semicircular law for Wigner ensembles
Götze F, Naumov A, Tikhomirov A, Timushev D (2018)
BERNOULLI 24(3): 2358-2400.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Götze, FriedrichUniBi;
Naumov, Alexey;
Tikhomirov, Alexander;
Timushev, Dmitry
Einrichtung
Abstract / Bemerkung
We consider a random symmetric matrix X = [X-jk] (n)(j, k=1) with upper triangular entries being i. i. d. random variables with mean zero and unit variance. We additionally suppose that E vertical bar X-11 vertical bar(4+delta) =: mu(4+delta) < infinity for some delta > 0. The aim of this paper is to significantly extend a recent result of the authors Gotze, Naumov and Tikhomirov (2015) and show that with high probability the typical distance between the Stieltjes transform of the empirical spectral distribution (ESD) of the matrix n(-1/2) X and Wigner's semicircle law is of order (nv)(-1) log n, where v denotes the distance to the real line in the complex plane. We apply this result to the rate of convergence of the ESD to the distribution function of the semicircle law as well as to rigidity of eigenvalues and eigenvector delocalization significantly extending a recent result by Gotze, Naumov and Tikhomirov (2015). The result on delocalization is optimal by comparison with GOE ensembles. Furthermore the techniques of this paper provide a new shorter proof for the optimal O(n(-1)) rate of convergence of the expected ESD to the semicircle law.
Stichworte
delocalization;
local semicircle law;
mean spectral distribution;
random;
matrices;
rate of convergence;
rigidity;
Stieltjes transform
Erscheinungsjahr
2018
Zeitschriftentitel
BERNOULLI
Band
24
Ausgabe
3
Seite(n)
2358-2400
ISSN
1350-7265
eISSN
1573-9759
Page URI
https://pub.uni-bielefeld.de/record/2918644
Zitieren
Götze F, Naumov A, Tikhomirov A, Timushev D. On the local semicircular law for Wigner ensembles. BERNOULLI. 2018;24(3):2358-2400.
Götze, F., Naumov, A., Tikhomirov, A., & Timushev, D. (2018). On the local semicircular law for Wigner ensembles. BERNOULLI, 24(3), 2358-2400. doi:10.3150/17-BEJ931
Götze, Friedrich, Naumov, Alexey, Tikhomirov, Alexander, and Timushev, Dmitry. 2018. “On the local semicircular law for Wigner ensembles”. BERNOULLI 24 (3): 2358-2400.
Götze, F., Naumov, A., Tikhomirov, A., and Timushev, D. (2018). On the local semicircular law for Wigner ensembles. BERNOULLI 24, 2358-2400.
Götze, F., et al., 2018. On the local semicircular law for Wigner ensembles. BERNOULLI, 24(3), p 2358-2400.
F. Götze, et al., “On the local semicircular law for Wigner ensembles”, BERNOULLI, vol. 24, 2018, pp. 2358-2400.
Götze, F., Naumov, A., Tikhomirov, A., Timushev, D.: On the local semicircular law for Wigner ensembles. BERNOULLI. 24, 2358-2400 (2018).
Götze, Friedrich, Naumov, Alexey, Tikhomirov, Alexander, and Timushev, Dmitry. “On the local semicircular law for Wigner ensembles”. BERNOULLI 24.3 (2018): 2358-2400.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in