Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates

Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, et al. (2016)
Biotechnology for Biofuels 9(1): 171.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Maus, IrenaUniBi; Koeck, Daniela E.; Cibis, Katharina G.; Hahnke, Sarah; Kim, Yong S.; Langer, Thomas; Kreubel, Jana; Erhard, Marcel; Bremges, AndreasUniBi ; Off, Sandra; Stolze, YvonneUniBi; Jaenicke, SebastianUniBi
Alle
Abstract / Bemerkung
Background: One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood. Results: The microbial community structure of an exemplary thermophilic biogas plant was analyzed by a comprehensive approach comprising the analysis of the microbial metagenome and metatranscriptome complemented by the cultivation of hydrolytic and acido-/acetogenic Bacteria as well as methanogenic Archaea. Analysis of metagenome-derived 16S rRNA gene sequences revealed that the bacterial genera Defluviitoga (5.5 %), Halocella (3.5 %), Clostridium sensu stricto (1.9 %), Clostridium cluster III (1.5 %), and Tepidimicrobium (0.7 %) were most abundant. Among the Archaea, Methanoculleus (2.8 %) and Methanothermobacter (0.8 %) were predominant. As revealed by a metatranscriptomic 16S rRNA analysis, Defluviitoga (9.2 %), Clostridium cluster III (4.8 %), and Tepidanaerobacter (1.1 %) as well as Methanoculleus (5.7 %) mainly contributed to these sequence tags indicating their metabolic activity, whereas Hallocella (1.8 %), Tepidimicrobium (0.5 %), and Methanothermobacter (<0.1 %) were transcriptionally less active. By applying 11 different cultivation strategies, 52 taxonomically different microbial isolates representing the classes Clostridia, Bacilli, Thermotogae, Methanomicrobia and Methanobacteria were obtained. Genome analyses of isolates support the finding that, besides Clostridium thermocellum and Clostridium stercorarium, Defluviitoga tunisiensis participated in the hydrolysis of hemicellulose producing ethanol, acetate, and H2/CO2. The latter three metabolites are substrates for hydrogentrophic and acetoclastic archaeal methanogenesis. Conclusions: Obtained results showed that high abundance of microorganisms as deduced from metagenome analysis does not necessarily indicate high transcriptional or metabolic activity, and vice versa. Additionally, it appeared that the microbiome of the investigated thermophilic biogas plant comprised a huge number of up to now unknown and insufficiently characterized species.
Erscheinungsjahr
2016
Zeitschriftentitel
Biotechnology for Biofuels
Band
9
Ausgabe
1
Art.-Nr.
171
ISSN
1754-6834
eISSN
1754-6834
Page URI
https://pub.uni-bielefeld.de/record/2905260

Zitieren

Maus I, Koeck DE, Cibis KG, et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnology for Biofuels. 2016;9(1): 171.
Maus, I., Koeck, D. E., Cibis, K. G., Hahnke, S., Kim, Y. S., Langer, T., Kreubel, J., et al. (2016). Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnology for Biofuels, 9(1), 171. doi:10.1186/s13068-016-0581-3
Maus, Irena, Koeck, Daniela E., Cibis, Katharina G., Hahnke, Sarah, Kim, Yong S., Langer, Thomas, Kreubel, Jana, et al. 2016. “Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates”. Biotechnology for Biofuels 9 (1): 171.
Maus, I., Koeck, D. E., Cibis, K. G., Hahnke, S., Kim, Y. S., Langer, T., Kreubel, J., Erhard, M., Bremges, A., Off, S., et al. (2016). Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnology for Biofuels 9:171.
Maus, I., et al., 2016. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnology for Biofuels, 9(1): 171.
I. Maus, et al., “Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates”, Biotechnology for Biofuels, vol. 9, 2016, : 171.
Maus, I., Koeck, D.E., Cibis, K.G., Hahnke, S., Kim, Y.S., Langer, T., Kreubel, J., Erhard, M., Bremges, A., Off, S., Stolze, Y., Jaenicke, S., Goesmann, A., Sczyrba, A., Scherer, P., König, H., Schwarz, W.H., Zverlov, V.V., Liebl, W., Pühler, A., Schlüter, A., Klocke, M.: Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnology for Biofuels. 9, : 171 (2016).
Maus, Irena, Koeck, Daniela E., Cibis, Katharina G., Hahnke, Sarah, Kim, Yong S., Langer, Thomas, Kreubel, Jana, Erhard, Marcel, Bremges, Andreas, Off, Sandra, Stolze, Yvonne, Jaenicke, Sebastian, Goesmann, Alexander, Sczyrba, Alexander, Scherer, Paul, König, Helmut, Schwarz, Wolfgang H., Zverlov, Vladimir V., Liebl, Wolfgang, Pühler, Alfred, Schlüter, Andreas, and Klocke, Michael. “Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates”. Biotechnology for Biofuels 9.1 (2016): 171.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Long-term investigation of microbial community composition and transcription patterns in a biogas plant undergoing ammonia crisis.
Fischer MA, Güllert S, Refai S, Künzel S, Deppenmeier U, Streit WR, Schmitz RA., Microb Biotechnol 12(2), 2019
PMID: 30381904
Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants.
Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Püttker S, Calusinska M, Zoun R, Saake G, Benndorf D, Reichl U., Microbiome 7(1), 2019
PMID: 31029164
Microbiome dynamics and adaptation of expression signatures during methane production failure and process recovery.
Grohmann A, Fehrmann S, Vainshtein Y, Haag NL, Wiese F, Stevens P, Naegele HJ, Oechsner H, Hartsch T, Sohn K, Grumaz C., Bioresour Technol 247(), 2018
PMID: 28954247
Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants.
Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A., Microb Biotechnol 11(4), 2018
PMID: 29205917
Proteiniborus indolifex sp. nov., isolated from a thermophilic industrial-scale biogas plant.
Hahnke S, Langer T, Klocke M., Int J Syst Evol Microbiol (), 2018
PMID: 29458500
Microbial rRNA gene expression and co-occurrence profiles associate with biokinetics and elemental composition in full-scale anaerobic digesters.
Ziels RM, Svensson BH, Sundberg C, Larsson M, Karlsson A, Yekta SS., Microb Biotechnol 11(4), 2018
PMID: 29633555
Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants.
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A., Appl Microbiol Biotechnol 102(12), 2018
PMID: 29713790
New concepts in anaerobic digestion processes: recent advances and biological aspects.
Castellano-Hinojosa A, Armato C, Pozo C, González-Martínez A, González-López J., Appl Microbiol Biotechnol 102(12), 2018
PMID: 29713791
Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors.
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M., Biotechnol Biofuels 11(), 2018
PMID: 29951113
Biochemical methane potential of microalgae biomass using different microbial inocula.
Gonzalez-Fernandez C, Barreiro-Vescovo S, de Godos I, Fernandez M, Zouhayr A, Ballesteros M., Biotechnol Biofuels 11(), 2018
PMID: 29988471
The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases.
Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV., Biotechnol Biofuels 11(), 2018
PMID: 30159029
Genetic repertoires of anaerobic microbiomes driving generation of biogas.
Grohmann A, Vainshtein Y, Euchner E, Grumaz C, Bryniok D, Rabus R, Sohn K., Biotechnol Biofuels 11(), 2018
PMID: 30250507
Dynamics of a Perturbed Microbial Community during Thermophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds.
Šafarič L, Shakeri Yekta S, Liu T, Svensson BH, Schnürer A, Bastviken D, Björn A., Microorganisms 6(4), 2018
PMID: 30314333
Comparative analysis of deep sequenced methanogenic communities: identification of microorganisms responsible for methane production.
Pyzik A, Ciezkowska M, Krawczyk PS, Sobczak A, Drewniak L, Dziembowski A, Lipinski L., Microb Cell Fact 17(1), 2018
PMID: 30572955
Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase.
Mechelke M, Koeck DE, Broeker J, Roessler B, Krabichler F, Schwarz WH, Zverlov VV, Zverlov VV, Liebl W., J Biotechnol 257(), 2017
PMID: 28450260
Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity.
Ransom-Jones E, McCarthy AJ, Haldenby S, Doonan J, McDonald JE., mSphere 2(4), 2017
PMID: 28776044
Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage.
Wojcieszak M, Pyzik A, Poszytek K, Krawczyk PS, Sobczak A, Lipinski L, Roubinek O, Palige J, Sklodowska A, Drewniak L., Front Microbiol 8(), 2017
PMID: 29033919
Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A., Biotechnol Biofuels 10(), 2017
PMID: 29158776

104 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Biofuels from microbes.
Antoni D, Zverlov VV, Schwarz WH., Appl. Microbiol. Biotechnol. 77(1), 2007
PMID: 17891391
A review of ADM1 extensions, applications, and analysis: 2002-2005.
Batstone DJ, Keller J, Steyer JP., Water Sci. Technol. 54(4), 2006
PMID: 17037164
Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors.
Karakashev D, Batstone DJ, Angelidaki I., Appl. Environ. Microbiol. 71(1), 2005
PMID: 15640206
Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants.
Nettmann E, Bergmann I, Pramschufer S, Mundt K, Plogsties V, Herrmann C, Klocke M., Appl. Environ. Microbiol. 76(8), 2010
PMID: 20154117
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass
Zverlov VV, Hiegl W, Koeck DE, Kellermann J, Koellmeier T, Schwarz WH., 2010
Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge.
Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A., ISME J 3(6), 2009
PMID: 19242531
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates.
Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S., Appl. Environ. Microbiol. 78(7), 2012
PMID: 22247168
Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation.
Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, Klocke M., Syst. Appl. Microbiol. 36(5), 2013
PMID: 23694815

AUTHOR UNKNOWN, 0
Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.
Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J., Int. J. Syst. Evol. Microbiol. 62(Pt 3), 2011
PMID: 22140171
Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology.
Moset V, Poulsen M, Wahid R, Hojberg O, Moller HB., Microb Biotechnol 8(5), 2015
PMID: 25737010
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms.
Eikmeyer FG, Rademacher A, Hanreich A, Hennig M, Jaenicke S, Maus I, Wibberg D, Zakrzewski M, Puhler A, Klocke M, Schluter A., Biotechnol Biofuels 6(1), 2013
PMID: 23557021
First international comparative study of volatile fatty acids in aqueous samples by chromatographic techniques: evaluating sources of error
Raposo F, Borja R, Mumme J, Orupold K, Esteves S, Noguerol-Arias J, Picard S., 2013

AUTHOR UNKNOWN, 0
Dual investigation of methanogenic processes by quantitative PCR and quantitative microscopic fingerprinting.
Kim YS, Westerholm M, Scherer P., FEMS Microbiol. Lett. 360(1), 2014
PMID: 25175903
FLASH: fast length adjustment of short reads to improve genome assemblies.
Magoc T, Salzberg SL., Bioinformatics 27(21), 2011
PMID: 21903629

AUTHOR UNKNOWN, 0
Ribosomal Database Project: data and tools for high throughput rRNA analysis.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24288368
Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
Maus I, Cibis KG, Wibberg D, Winkler A, Stolze Y, Konig H, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801333
The COG database: a tool for genome-scale analysis of protein functions and evolution.
Tatusov RL, Galperin MY, Natale DA, Koonin EV., Nucleic Acids Res. 28(1), 2000
PMID: 10592175
The COG database: new developments in phylogenetic classification of proteins from complete genomes.
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV., Nucleic Acids Res. 29(1), 2001
PMID: 11125040
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22645317
Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system.
Reil M, Erhard M, Kuijper EJ, Kist M, Zaiss H, Witte W, Gruber H, Borgmann S., Eur. J. Clin. Microbiol. Infect. Dis. 30(11), 2011
PMID: 21503840
Chemically Defined Minimal Medium for Growth of the Anaerobic Cellulolytic Thermophile Clostridium thermocellum.
Johnson EA, Madia A, Demain AL., Appl. Environ. Microbiol. 41(4), 1981
PMID: 16345748

Wenzel W., 2002
Preparation of crystalline, amorphous, and dyed cellulase substrates
Wood TM., 1988
Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor.
Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH., Int. J. Syst. Evol. Microbiol. 65(8), 2015
PMID: 25872956

AUTHOR UNKNOWN, 0
Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.
Cibis KG, Gneipel A, Konig H., J. Biotechnol. 220(), 2016
PMID: 26779817
Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers.
Falk S, Liu B, Braker G., Syst. Appl. Microbiol. 33(6), 2010
PMID: 20675088
Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems.
Patureau D, Zumstein E, Delgenes JP, Moletta R., Microb. Ecol. 39(2), 2000
PMID: 10833227
Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium.
Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Droge S, Konig H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24639207
Methanogens: reevaluation of a unique biological group.
Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS., Microbiol. Rev. 43(2), 1979
PMID: 390357

AUTHOR UNKNOWN, 0
ARB: a software environment for sequence data.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH., Nucleic Acids Res. 32(4), 2004
PMID: 14985472

AUTHOR UNKNOWN, 0
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse E, Peplies J, Glockner FO., Bioinformatics 28(14), 2012
PMID: 22556368
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23193283
Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant.
Koeck DE, Wibberg D, Maus I, Winkler A, Albersmeier A, Zverlov VV, Liebl W, Puhler A, Schwarz WH, Schluter A., J. Biotechnol. 188(), 2014
PMID: 25173616
Draft genome sequence of Herbinix hemicellulosilytica T3/55 T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor.
Koeck DE, Maus I, Wibberg D, Winkler A, Zverlov VV, Liebl W, Puhler A, Schwarz WH, Schluter A., J. Biotechnol. 214(), 2015
PMID: 26253960
Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Puhler A, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21329740
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.
Maus I, Cibis KG, Bremges A, Stolze Y, Wibberg D, Tomazetto G, Blom J, Sczyrba A, Konig H, Puhler A, Schluter A., J. Biotechnol. 232(), 2016
PMID: 27165504
FR-HIT, a very fast program to recruit metagenomic reads to homologous reference genomes.
Niu B, Zhu Z, Fu L, Wu S, Li W., Bioinformatics 27(12), 2011
PMID: 21505035
Operational analytics of biogas plants to improve efficiency and to ensure process stability
Scherer PA., 2007

AUTHOR UNKNOWN, 0
Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.
Zhang Q, Shuwen G, Zhang J, Fane AG, Kjelleberg S, Rice SA, McDougald D., J. Appl. Microbiol. 118(4), 2015
PMID: 25604265
Effects of different nitrogen sources on the biogas production - a lab-scale investigation.
Wagner AO, Hohlbrugger P, Lins P, Illmer P., Microbiol. Res. 167(10), 2011
PMID: 22197536
Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome.
Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC., PLoS ONE 3(6), 2008
PMID: 18575584
Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants.
Bagge E, Persson M, Johansson KE., J. Appl. Microbiol. 109(5), 2010
PMID: 20629803
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
Nachweis von Clostridium botulinum Neurotoxin in Rinderkot und Silage. Empfehlungen zur Durchführung des Maus-Bioessays
Dlabola J, Aue A, Gessler F, Köhler B, Neubauer H, Repp A, Seyboldt C., 2013
The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture.
Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM., Appl. Environ. Microbiol. 72(1), 2006
PMID: 16391122
Methanogenesis in thermophilic biogas reactors.
Ahring BK., Antonie Van Leeuwenhoek 67(1), 1995
PMID: 7741531
Plants for the generation of bioenergy
Weiland P, Fricke K, Heußner C, Hüttner A, Turk T., 2015

AUTHOR UNKNOWN, 2003
Conversion of acetic acid to methane by thermophiles
Zinder SH., 1990
Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture.
Lee MJ, Zinder SH., Appl. Environ. Microbiol. 54(6), 1988
PMID: 16347656
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A., Biotechnol Biofuels 8(), 2015
PMID: 25688290
Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium
Simankova MV, Chernych NA, Osipov GA, Zavarzin GA., 1993
Energetics of syntrophic cooperation in methanogenic degradation.
Schink B., Microbiol. Mol. Biol. Rev. 61(2), 1997
PMID: 9184013
Syntrophic acetate-oxidizing microbes in methanogenic environments.
Hattori S., Microbes Environ. 23(2), 2008
PMID: 21558697
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes.
Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnurer A., Environ Microbiol Rep 3(4), 2011
PMID: 23761313
Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis.
Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M., J. Appl. Microbiol. 105(6), 2008
PMID: 19120632
Determination of methanogenic Archaea abundance in a mesophilic biogas plant based on 16S rRNA gene sequence analysis.
Bergmann I, Nettmann E, Mundt K, Klocke M., Can. J. Microbiol. 56(5), 2010
PMID: 20555406
Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome.
Theuerl S, Kohrs F, Benndorf D, Maus I, Wibberg D, Schluter A, Kausmann R, Heiermann M, Rapp E, Reichl U, Puhler A, Klocke M., Appl. Microbiol. Biotechnol. 99(18), 2015
PMID: 25998656
Diversity of the resident microbiota in a thermophilic municipal biogas plant.
Weiss A, Jerome V, Freitag R, Mayer HK., Appl. Microbiol. Biotechnol. 81(1), 2008
PMID: 18820906
Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.
Smith AM, Sharma D, Lappin-Scott H, Burton S, Huber DH., Appl. Microbiol. Biotechnol. 98(5), 2013
PMID: 23989973
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.
Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M., FEMS Microbiol. Ecol. 79(3), 2011
PMID: 22126587
Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics.
Krakat N, Westphal A, Schmidt S, Scherer P., Appl. Environ. Microbiol. 76(6), 2010
PMID: 20097828
The microcosm of a biogas fermenter: comparison of moderate hyperthermophilic. (60 °C) with thermophilic. (55 °C) conditions
Krakat N, Westphal A, Satke K, Schmidt S, Scherer P., 2010
Microbial succession during thermophilic digestion: the potential of Methanosarcina sp.
Illmer P, Reitschuler C, Wagner AO, Schwarzenauer T, Lins P., PLoS ONE 9(2), 2014
PMID: 24586260
Methanosarcina: the rediscovered methanogen for heavy duty biomethanation.
De Vrieze J, Hennebel T, Boon N, Verstraete W., Bioresour. Technol. 112(), 2012
PMID: 22418081
Disaggregation of Methanosarcina spp. and Growth as Single Cells at Elevated Osmolarity.
Sowers KR, Boone JE, Gunsalus RP., Appl. Environ. Microbiol. 59(11), 1993
PMID: 16349092
Schnellmethode zur biologischen Aktivitätsbestimmung in Biogasanlagen: quantitativer mikroskopischer Fingerabdruck
Scherer PA, Neumann L, Kim Y., 2012
Two major archaeal pseudomurein endoisopeptidases: PeiW and PeiP.
Visweswaran GR, Dijkstra BW, Kok J., Archaea 2010(), 2010
PMID: 21113291
Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri
Maestrojuan GM, Boone DR, Xun LY, Mah RA, Zhang LF., 1990
Hygiene and sanitation in biogas plants
Fröschle B, Heiermann M, Lebuhn M, Messelhäusser U, Plöchl M., 2015
Microbial resource management: the road to go for environmental biotechnology
Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de P, van T, Boon N., 2007
Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor.
Hahnke S, Striesow J, Elvert M, Mollar XP, Klocke M., Int. J. Syst. Evol. Microbiol. 64(Pt 8), 2014
PMID: 24860110
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota.
Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D., Clin. Microbiol. Rev. 28(1), 2015
PMID: 25567229
The metagenome of an anaerobic microbial community decomposing poplar wood chips.
van der Lelie D, Taghavi S, McCorkle SM, Li LL, Malfatti SA, Monteleone D, Donohoe BS, Ding SY, Adney WS, Himmel ME, Tringe SG., PLoS ONE 7(5), 2012
PMID: 22629327
Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Puhler A, Sczyrba A, Schluter A., Biotechnol Biofuels 9(), 2016
PMID: 27462367
First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking.
Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW, Hugenholtz P., PeerJ 3(), 2015
PMID: 25650158

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27525040
PubMed | Europe PMC

Suchen in

Google Scholar